Skip to main content

How Reward Can Induce Reverse Replay of Behavioral Sequences in the Hippocampus

  • Conference paper
Neural Information Processing (ICONIP 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4232))

Included in the following conference series:

Abstract

In a recent experiment, Foster and Wilson [1] have observed reverse replay of behavioral sequences in rodents’ hippocampal place cells during non-running awake state in coincidence with sharp waves. In this paper, to elucidate this reverse replay mechanism, a theta phase precession computational model is assumed in one time trial learning experiment of a behavioral sequence. Our simulations demonstrate that reverse replay can occur during sharp waves states under the assumption that place cells’ excitability is elevated by reward. This reward induced reverse replay in the hippocampus might serve as a basis for reinforcement learning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Foster, D.J., Wilson, M.A.: Reverse replay of behavioural sequences in hippocampal place cells during the awake state. Nature, online (February 2006)

    Google Scholar 

  2. OKeefe, J., Nadel, L.: The hippocampus as a cognitive map. Clarendon Press, Oxford (1978)

    Google Scholar 

  3. Recce, M.L., OKeefe, J.: Phase relationship between hippocampal place units and the eeg theta rhythm. Hippocampus 3, 317–330 (1993)

    Article  Google Scholar 

  4. Skaggs, W.E., McNaughton, B.L., Wilson, M.A., Barnes, C.A.: Theta phase precession in hippocampal neuronal populations and the compression of temporal sequences. Hippocampus 6, 149–172 (1996)

    Article  Google Scholar 

  5. Yamaguchi, Y., McNaughton, B.L.: Nonlinear dynamics generating theta phase precession in hippocampal closed circuit and generation of episodic memory. In: Usui, S., Omori, T. (eds.) ICONIP 1998 -JNNS 1998, Japan, vol. 2, pp. 781–784. IOS Press, Burke (1998)

    Google Scholar 

  6. Yamaguchi, Y.: A theory of hippocampal memory based on theta phase precession. Biol. Cybern. 89, 19 (2003)

    Google Scholar 

  7. Levy, W.B., Steward, O.: Temporal contiguity requirements for long term associative potentiation/depression in the hippocampus. Neuroscience 8, 791–797 (1983)

    Article  Google Scholar 

  8. Bi, G., Poo, M.: Distributed synaptic modification in neural networks induced by patterned stimulation. Nature 401, 792–796 (1999)

    Article  Google Scholar 

  9. Sato, N., Yamaguchi, Y.: Memory encoding by “theta phase precession” in the hippocampal network. Neural Computation 15, 2379–2397 (2003)

    Article  MATH  Google Scholar 

  10. Wagatsuma, H., Yamaguchi, Y.: Cognitive map formation through sequence encoding by theta phase precession. Neural Computation 16(12), 2665–2697 (2004)

    Article  MATH  Google Scholar 

  11. Wu, Z., Yamaguchi, Y.: Input-dependent learning rule for the memory of spatiotemporal sequences in hippocampal network with theta phase precession. Biol. Cybern. 90, 113–124 (2004)

    Article  MATH  Google Scholar 

  12. Lee, A.K., Wilson, M.A.: Memory of sequential experience in the hippocampus during slow wave sleep. Neuron 36, 1183–1194 (2002)

    Article  Google Scholar 

  13. Buzsáki, G.: Hippocampal sharp waves: their origin and significance. Brain Res. 398, 242–252 (1986)

    Article  Google Scholar 

  14. Buzsáki, G., Bragin, A., Chrobak, J.J., Nádasky, Z., Sik, A., Hsu, M., Ylinen, A.: Oscillatory and intermittent synchrony in the hippocampus: relevance to memory trace formation. In: Temporal coding in the brain, pp. 145–172. Springer, Heidelberg (1994)

    Google Scholar 

  15. Kobayashi, T., Nishijo, H., Fukuda, M., Bures, J., Ono, T.: Task-dependent representations in rat hippocampal place neurons. J. Neurophysiol. 78, 597–613 (1997)

    Google Scholar 

  16. Hollup, S.A., Molden, S., Donnett, J.G., Moser, M.B., Moser, E.I.: Accumulation of hippocampal place fields at the goal location in an annular watermaze task. The Journal of Neuroscience 21(5), 1635–1644 (2001)

    Google Scholar 

  17. Moser, E.I.: Spatial maps in hippocampal and parahippocampal cortices. Abstract Viewer/Itinerary Planner. Society for Neuroscience, Washington, DC, Program No. 466 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Molter, C., Sato, N., Salihoglu, U., Yamaguchi, Y. (2006). How Reward Can Induce Reverse Replay of Behavioral Sequences in the Hippocampus. In: King, I., Wang, J., Chan, LW., Wang, D. (eds) Neural Information Processing. ICONIP 2006. Lecture Notes in Computer Science, vol 4232. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11893028_1

Download citation

  • DOI: https://doi.org/10.1007/11893028_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-46479-2

  • Online ISBN: 978-3-540-46480-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics