Dynamic Similarity Kernel for Visual Recognition

  • Wang Yan
  • Qingshan Liu
  • Hanqing Lu
  • Songde Ma
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4252)


Inspired by studies of cognitive psychology, we proposed a new dynamic similarity kernel for visual recognition. This kernel has great consistency with human visual similarity judgement by incorporating the perceptual distance function. Moreover, this kernel can be seen as an extension of Gaussian kernel, and therefore can deal with nonlinear variations well like the traditional kernels. Experimental results on natural image classification and face recognition show its superior performance compared to other kernels.


Face Recognition Linear Discriminant Analysis Gaussian Kernel Image Retrieval Polynomial Kernel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aizerman, M., Braverman, E., Rozonoer, L.: Theoretical foundations of the potential function method in pattern recognition learning. Automation and Remote Control 25, 821–837 (1964)MathSciNetGoogle Scholar
  2. 2.
    Jolliffe, I.: Principal Component Analysis. Springer, New York (1986)Google Scholar
  3. 3.
    Fisher, R.: The use of multiple measurements in taxonomic problems. Annals of Eugenics 7, 179–188 (1936)Google Scholar
  4. 4.
    Wang, L., Gao, Y., Chan, K., Xue, P., Yau, W.: Retrieval with knowledge-driven kernel design: An approach to improving SVM-based CBIR with relevance feedback. In: Proc. of Int. Conf. Computer Vision (2005)Google Scholar
  5. 5.
    Wu, G., Chang, E., Panda, N.: Formulating context-dependent similarity functions. In: Proc. of ACM Multimedia (2005)Google Scholar
  6. 6.
    Yan, W., Liu, Q., Lu, H., Ma, S.: Multiple similarities based kernel subspace learning for image classification. In: Proc. of Asian Conf. Computer Vision (2006)Google Scholar
  7. 7.
    Yang, M., Ahuja, N., Kriegman, D.: Face recognition using kernel eigenfaces. In: Proc. of Int. Conf. Image Processing (2000)Google Scholar
  8. 8.
    Liu, Q., Lu, H., Ma, S.: Improving kernel fisher discriminant analysis for face recognition. IEEE Trans. on Circuits and Systems for Video Technology, Special Issue on Image and Video Based Biometrics 14, 42–49 (2004)Google Scholar
  9. 9.
    Lyu, S.: Mercer kernels for object recognition with local features. In: Proc. of IEEE Computer Society Conf. Computer Vision and Pattern Recognition (2005)Google Scholar
  10. 10.
    Grauman, K., Darrell, T.: The pyramid match kernel: Discriminative classification with sets of image features. In: Proc. of Int. Conf. Computer Vision (2005)Google Scholar
  11. 11.
    Duda, R., Hart, P., Stork, D.: Pattern Classification, 2nd edn. John Wiley & Sons, Inc., Chichester (2001)zbMATHGoogle Scholar
  12. 12.
    Tenenbaum, J., Silva, V., Langford, J.: A global geometric framework for nonlinear dimensionality reduction. Science 290, 2319–2323 (2000)CrossRefGoogle Scholar
  13. 13.
    Roweis, S., Saul, L.: Nonlinear dimensionality reduction by locally linear embedding. Science 290, 2323–2326 (2000)CrossRefGoogle Scholar
  14. 14.
    Belkin, M., Niyogi, P.: Laplacian eigenmaps and spectral techniques for embedding and clustering. In: Advances in Neural Information Processing System, vol. 13, MIT Press, Cambridge (2001)Google Scholar
  15. 15.
    Vapnik, V.: Statistical Learning Theory. John Wiley, Chichester (1998)zbMATHGoogle Scholar
  16. 16.
    Schölkopf, B., Smola, A., Müller, K.: Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation 10, 1299–1319 (1998)CrossRefGoogle Scholar
  17. 17.
    Mika, S., Rätsch, G., Weston, J., Schölkopf, B., Müller, K.: Fisher discriminant analysis with kernels. In: Proc. of IEEE Neural Networks for Signal Processing Workshop (1999)Google Scholar
  18. 18.
    Baudat, G., Anouar, F.: Generalized discriminant analysis using a kernel approach. Neural Computation 12, 2385–2404 (2000)CrossRefGoogle Scholar
  19. 19.
    Tversky, A.: Features of similarity. Psychological Rev. 84, 327–352 (1977)CrossRefGoogle Scholar
  20. 20.
    Goldstone, R.: Similarity, interactive activation, and mapping. J. Experimental Psychology: Learning, Memory, and Cognition 20, 3–28 (1994)CrossRefGoogle Scholar
  21. 21.
    Li, B., Chang, E., Wu, Y.: Enhancing DPF for near-replica image recognition. ACM Multimedia J. special issue on content-based image retrieval 8, 512–522 (2003)Google Scholar
  22. 22.
    Qamra, A., Meng, Y., Chang, E.: Enhanced perceptual distance functions and indexing for image replica recognition. IEEE Trans. on Pattern Analysis and Machine Intelligence 27, 379–391 (2005)CrossRefGoogle Scholar
  23. 23.
    Yong, Q., Jie, Y.: Modified kernel functions by geodesic distance. EURASIP J. Applied Signal Processing 16, 2515–2521 (2004)CrossRefGoogle Scholar
  24. 24.
    Gunn, S.: Support vector machines for classification and regression. Technical Report, School of Electronics and Computer Science, University of Southampton (1998)Google Scholar
  25. 25.
    Chen, Y., Wang, J.: Image categorization by learning and reasoning with regions. J. Machine Learning Research 5, 913–939 (2004)Google Scholar
  26. 26.
    Deselaers, T., Keysers, D., Ney, H.: Features for image retrieval: A quantitative comparison. In: Proc. of 26th DAGM Symposium on Pattern Recognition (2004)Google Scholar
  27. 27.
    Marée, R., Geurts, P., Piater, J., Wehenkel, L.: Random subwindows for robust image classification. In: Proc. of IEEE Computer Society Conf. Computer Vision and Pattern Recognition (2005)Google Scholar
  28. 28.
    Liu, Q., Huang, R., Lu, H., Ma, S.: Face recognition using kernel based Fisher discriminant analysis. In: Proc. of Int. Conf. Automatic Face and Gestures Recognition (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Wang Yan
    • 1
  • Qingshan Liu
    • 1
  • Hanqing Lu
    • 1
  • Songde Ma
    • 1
  1. 1.National Laboratory of Pattern Recognition, Institute of AutomationChinese Academy of SciencesBeijingP.R. China

Personalised recommendations