Advertisement

Fuzzy Motion Adaptive Algorithm for Video De-interlacing

  • P. Brox
  • I. Baturone
  • S. Sánchez-Solano
  • J. Gutiérrez-Ríos
  • F. Fernández-Hernández
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4252)

Abstract

A motion adaptive algorithm for video de-interlacing is presented in this paper. It is based on a fuzzy inference system, which performs an interpolation between two linear techniques as a function of the motion level. Fuzzy systems with different number of ’if-then’ rules have been analyzed and compared in terms of complexity as well as efficiency in de-interlacing benchmark video sequences.

Keywords

Video De-interlacing Motion Adaptive Fuzzy Inference Systems Supervised Learning Algorithms 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    De Haan, G.: Video Processing. University Press, Eindhoven (2004)Google Scholar
  2. 2.
    De Haan, G., Bellers, E.B.: De-interlacing: An overview. In: Proc. of the IEEE, vol. 86, pp. 1839–1857 (1998)Google Scholar
  3. 3.
    Genesis Microchip, Inc., Preliminary data sheet of Genesis gmVLD8, 8 bit digital video line doubler, version 1 (1996)Google Scholar
  4. 4.
    Weston, M.: Interpolating lines of video signals. US-patent 4, 789–893 (1998)Google Scholar
  5. 5.
    Bock, A.M.: Motion adaptive standards conversion between formats of similar field rates. Signal Processing: Image Communication 6(3), 275–280 (1994)CrossRefGoogle Scholar
  6. 6.
    Doyle, T., Looymans, M.: Progressive scan conversion using edge information. In: Signal Processing of HDTV, vol. II, pp. 711–721. Elsevier Science Publishers, Amsterdam (1990)Google Scholar
  7. 7.
    Van de Ville, D., Rogge, B., Philips, W., Lemahieu, I.: De-interlacing using fuzzy-based motion detection. In: Proc. 3rd Int. Conf. on Knowledge-Based Intelligent Information Engineering Systems, pp. 263–267 (1999)Google Scholar
  8. 8.
    Gutiérrez-Ríos, J., Fernández-Hernández, F., Crespo, J.C., Triviño, G.: Motion adaptive fuzzy video de-interlacing method based on convolution techniques. In: Proc. of Information Processing and Management of Uncertainty in Knowledge-Bsed Systems (2004)Google Scholar
  9. 9.
    Moreno-Velo, F.J., Baturone, I., Sánchez-Solano, S., Barriga, A.: Rapid design of complex fuzzy systems with XFUZZY. In: Proc. IEEE Int. Conf. on Fuzzy Systems, pp. 342–347 (2003)Google Scholar
  10. 10.
    Moreno-Velo, F.J., Baturone, I., Senhadji, R., Sánchez-Solano, S.: Tuning complex fuzzy systems by supervised learning algorithms. In: Proc. IEEE Int. Conf. on Fuzzy Systems, pp. 226–231 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • P. Brox
    • 1
  • I. Baturone
    • 1
  • S. Sánchez-Solano
    • 1
  • J. Gutiérrez-Ríos
    • 2
  • F. Fernández-Hernández
    • 2
  1. 1.Instituto de Microelectrónica de Sevilla (IMSE-CNM-CSIC)SevillaSpain
  2. 2.Dpto. Tecnología FotónicaUniversidad Politécnica de MadridBoadilla del Monte-MadridSpain

Personalised recommendations