Skip to main content

Shifting Patterns Discovery in Microarrays with Evolutionary Algorithms

  • Conference paper
Knowledge-Based Intelligent Information and Engineering Systems (KES 2006)

Abstract

In recent years, the interest in extracting useful knowledge from gene expression data has experimented an enormous increase with the development of microarray technique. Biclustering is a recent technique that aims at extracting a subset of genes that show a similar behaviour for a subset conditions. It is important, therefore, to measure the quality of a bicluster, and a way to do that would be checking if each data submatrix follows a specific trend, represented by a pattern. In this work, we present an evolutionary algorithm for finding significant shifting patterns which depict the general behaviour within each bicluster. The empirical results we have obtained confirm the quality of our proposal, obtaining very accurate solutions for the biclusters used.

This research was supported by the Spanish Research Agency CICYT under grants TIN2004–00159 and TIN2004-06689C0303.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aguilar-Ruiz, J.S.: Shifting and scaling patterns from gene expression data. Bioinformatics 21, 3840–3845 (2005)

    Article  Google Scholar 

  2. Aguilar-Ruiz, J.S., Divina, F.: Biclustering of expression data with evolutionary computation. IEEE Transactions on Knowledge & Data Engineering (to be published)

    Google Scholar 

  3. Alizadeh, A.A., Eisen, M.B., Davis, R.E., Ma, C., Lossos, I.S., Rosenwald, A., Boldrick, J.C., Sabet, H., Tran, T., Yu, X., Powell, J.I., Yang, L., Marti, G.E., Moore, T., Hudson, J., Lu, L., Lewis, D.B., Tibshirani, R., Sherlock, G., Chan, W.C., Greiner, T.C., Weisenburger, D.D., Armitage, J.O., Warnke, R., Levy, R., Wilson, W., Grever, M.R., Byrd, J.C., Botstein, D., Brown, P.O., Staudt, L.M.: Distinct types of diffuse large b-cell lymphoma identified by gene expression profiling. Nature 403, 503–511 (2000)

    Article  Google Scholar 

  4. Ben-Dor, A., Shamir, R., Yakhini, Z.: Clustering gene expression patterns. Journal of Computational Biology 6(3-4), 281–297 (1999)

    Article  Google Scholar 

  5. Bleuler, S., Prelić, A., Zitzler, E.: An ea framework for biclustering of gene expression data, Piscataway, NJ, pp. 166–173 (2000)

    Google Scholar 

  6. Bryan, K., Cunningham, P., Bolshakova, N.: Biclustering of expression data using simulated annealing. In: 18th IEEE Symposium on Computer-Based Medical Systems, Dublin, Ireland, pp. 383–388 (2005)

    Google Scholar 

  7. Chambers, L.D., et al.: Practical Handbook of Genetic Algorithms, vol. III. CRC Press, Boca Raton (1999)

    MATH  Google Scholar 

  8. Cheng, Y., Church, G.M.: Biclustering of expression data. In: Proceedings of the 8th International Conference on Intellingent Systemns for Molecular Biology, La Jolla, CA, pp. 93–103 (2000)

    Google Scholar 

  9. Cho, R., Campbell, M., Winzeler, E., Steinmetz, L., Conway, A., Wodicka, L., Wolfsberg, T., Gabrielian, A., Landsman, D., Lockhart, D., Davis, R.: A genome-wide transcriptional analysis of the mitotic cell cycle. Molecular Cell 2, 65–73 (1998)

    Article  Google Scholar 

  10. DeJong, K.A.: An analysis of the behavior of a class of genetic adaptive systems. PhD thesis, University of Michigan (1975)

    Google Scholar 

  11. Goldberg, D.E.: Genetic Algorithms in Search, Optimization & Machine Learning. Addison-Wesley, Reading (1989)

    MATH  Google Scholar 

  12. Hartigan, J.A.: Direct clustering of a data matrix. Journal of the American Statistical Association 67(337), 123–129 (1972)

    Article  Google Scholar 

  13. Madeira, S.C., Oliveira, A.L.: Biclustering algorithms for biological data analysis: A survey. IEEE Transactions on Computational Biology and Bioinformatics 1, 24–25 (2004)

    Article  Google Scholar 

  14. Tanay, A., Sharan, R., Shamir, R.: Discovering statistically significant biclusters in gene expression data. Bioinformatics 18, 136–144 (2002)

    Google Scholar 

  15. Wang, H., Wang, W., Yang, J., Yu, P.S.: Clustering by pattern similarity in large data sets. In: ACM SIGMOD International Conference on Management of Data, Madison, WI, pp. 394–405 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pontes, B., Giráldez, R., Aguilar–Ruiz, J.S. (2006). Shifting Patterns Discovery in Microarrays with Evolutionary Algorithms. In: Gabrys, B., Howlett, R.J., Jain, L.C. (eds) Knowledge-Based Intelligent Information and Engineering Systems. KES 2006. Lecture Notes in Computer Science(), vol 4252. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11893004_160

Download citation

  • DOI: https://doi.org/10.1007/11893004_160

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-46537-9

  • Online ISBN: 978-3-540-46539-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics