Finding Simple Fuzzy Classification Systems with High Interpretability Through Multiobjective Rule Selection

  • Hisao Ishibuchi
  • Yusuke Nojima
  • Isao Kuwajima
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4252)


In this paper, we demonstrate that simple fuzzy rule-based classification systems with high interpretability are obtained through multiobjective genetic rule selection. In our approach, first a prespecified number of candidate fuzzy rules are extracted from numerical data in a heuristic manner using rule evaluation criteria. Then multiobjective genetic rule selection is applied to the extracted candidate fuzzy rules to find a number of non-dominated rule sets with respect to the classification accuracy and the complexity. The obtained non-dominated rule sets form an accuracy-complexity tradeoff surface. The performance of each non-dominated rule set is evaluated in terms of its classification accuracy and its complexity. Computational experiments show that our approach finds simple fuzzy rules with high interpretability for some benchmark data sets in the UC Irvine machine learning repository.


Fuzzy Rule Training Pattern Antecedent Condition Machine Learning Repository Candidate Rule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., Verkamo, A.I.: Fast Discovery of Association Rules. In: Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P., Uthurusamy, R. (eds.) Advances in Knowledge Discovery and Data Mining, pp. 307–328. AAAI Press, Menlo Park (1996)Google Scholar
  2. 2.
    Coello Coello, C.A., Lamont, G.B.: Applications of Multi-Objective Evolutionary Algorithms. World Scientific, Singapore (2004)zbMATHGoogle Scholar
  3. 3.
    Coello Coello, C.A., Van Veldhuizen, D.A., Lamont, G.B.: Evolutionary Algorithms for Solving Multi-Objective Problems. Kluwer Academic Publishers, Boston (2002)zbMATHGoogle Scholar
  4. 4.
    Coenen, F., Leng, P.: Obtaining Best Parameter Values for Accurate Classification. In: Proc. of the 5th IEEE International Conference on Data Mining, pp. 549–552 (2005)Google Scholar
  5. 5.
    Coenen, F., Leng, P., Zhang, L.: Threshold Tuning for Improved Classification Association Rule Mining. In: Ho, T.-B., Cheung, D., Liu, H. (eds.) PAKDD 2005. LNCS (LNAI), vol. 3518, pp. 216–225. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Cordon, O., del Jesus, M.J., Herrera, F., Magdalena, L., Villar, P.: A Multiobjective Genetic Learning Process for Joint Feature Selection and Granularity and Contexts Learning in Fuzzy Rule-based Classification Systems. In: Casillas, J., Cordon, O., Herrera, F., Magdalena, L. (eds.) Interpretability Issues in Fuzzy Modeling, pp. 79–99. Springer, Berlin (2003)Google Scholar
  7. 7.
    Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. John Wiley & Sons, Chichester (2001)zbMATHGoogle Scholar
  8. 8.
    Deb, K., Pratap, A., Agrawal, S., Meyarivan, T.: A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II. IEEE Trans. on Evolutionary Computation 6(2), 182–197 (2002)CrossRefGoogle Scholar
  9. 9.
    Gonzalez, A., Perez, R.: SLAVE: A Genetic Learning System based on an Iterative Approach. IEEE Trans. on Fuzzy Systems 7(2), 176–191 (1999)CrossRefGoogle Scholar
  10. 10.
    Ishibuchi, H., Murata, T., Turksen, I.B.: Single-Objective and Two-Objective Genetic Algorithms for Selecting Linguistic Rules for Pattern Classification Problems. Fuzzy Sets and Systems 89(2), 135–150 (1997)CrossRefGoogle Scholar
  11. 11.
    Ishibuchi, H., Nakashima, T., Murata, T.: Three-Objective Genetics-based Machine Learning for Linguistic Rule Extraction. Information Sciences 136(1-4), 109–133 (2001)zbMATHCrossRefGoogle Scholar
  12. 12.
    Ishibuchi, H., Nakashima, T., Nii, M.: Classification and Modeling with Linguistic Information Granules: Advanced Approaches to Linguistic Data Mining. Springer, Berlin (2004)Google Scholar
  13. 13.
    Ishibuchi, H., Nozaki, K., Yamamoto, N., Tanaka, H.: Construction of Fuzzy Classification Systems with Rectangular Fuzzy Rules Using Genetic Algorithms. Fuzzy Sets and Systems 65(2/3), 237–253 (1994)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Ishibuchi, H., Nozaki, K., Yamamoto, N., Tanaka, H.: Selecting Fuzzy If-Then Rules for Classification Problems Using Genetic Algorithms. IEEE Trans. on Fuzzy Systems 3(3), 260–270 (1995)CrossRefGoogle Scholar
  15. 15.
    Ishibuchi, H., Yamamoto, T.: Fuzzy Rule Selection by Multi-Objective Genetic Local Search Algorithms and Rule Evaluation Measures in Data Mining. Fuzzy Sets and Systems 141(1), 59–88 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Jimenez, F., Gomez-Skarmeta, A.F., Sanchez, G., Roubos, H., Babuska, R.: Accurate, Transparent and Compact Fuzzy Models by Multi-Objective Evolutionary Algorithms. In: Casillas, J., Cordon, O., Herrera, F., Magdalena, L. (eds.) Interpretability Issues in Fuzzy Modeling, pp. 431–451. Springer, Berlin (2003)Google Scholar
  17. 17.
    Wang, H., Kwong, S., Jin, Y., Wei, W., Man, K.F.: Multi-Objective Hierarchical Genetic Algorithm for Interpretable Fuzzy Rule-based Knowledge Extraction. Fuzzy Sets and Systems 149(1), 149–186 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Wang, H., Kwong, S., Jin, Y., Wei, W., Man, K.F.: Agent-based Evolutionary Approach for Interpretable Rule-based Knowledge Extraction. IEEE Trans. on Systems, Man, and Cybernetics - Part C: Applications and Reviews 35(2), 143–155 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Hisao Ishibuchi
    • 1
  • Yusuke Nojima
    • 1
  • Isao Kuwajima
    • 1
  1. 1.Department of Computer Science and Intelligent Systems, Graduate School of EngineeringOsaka Prefecture UniversitySakai, OsakaJapan

Personalised recommendations