Geometric Hermite Curves Based on Different Objective Functions

  • Jing Chi
  • Caiming Zhang
  • Xiaoming Wu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4270)


Based on the objective function defined by the approximation of the curvature variation formula of the curve, a new method for constructing composite optimized geometric Hermite (COH) curves is presented in this paper. The new method can deal with some cases in which neither of the existing methods those are based on minimum curvature variation or minimum strain energy can get pleasing shape. The comparison of the new method with the existing methods are given, which shows that none of the new method and the existing ones can deal with all the cases well. The experiments show that combination of the new method with the existing methods can achieve a good result in all cases.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chen, Y., Beier, K.-P., Papageorgiou, D.: Direct highlight line modification on NURBS surfaces. Computer Aided Geometric Design 14(6), 583–601 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    de Boor, C., Höllig, K., Sabin, M.: High accuracy geometric Hermite interpolation. Computer Aided Geometric Design 4, 269–278 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Höllig, K., Koch, J.: Geometric Hermite interpolation. Computer Aided Geometric Design 12(6), 567–580 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Höllig, K., Koch, J.: Geometric Hermite interpolation with maximal order and smoothness. Computer Aided Geometric Design 13(8), 681–695 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Chi, J., Zhang, C., Xu, L.: constructing geometric Hermite curve with minimum curvature variation. In: Ninth International Conference on CAD/CG, vol. 1, pp. 58–63 (2005)Google Scholar
  6. 6.
    Meek, D.S., Walton, D.J.: Geometric Hermite interpolation with Tschirnhausen cubics. J. Comput. Appl. Math. 81(2), 299–309 (1997a)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Meek, D.S., Walton, D.J.: Hermite interpolation with Tschirnhausen cubic spirals. Computer Aided Geometric Design 14(7), 619–635 (1997b)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Reif, U.: On the local existence of the quadratic geometric Hermite interpolant. Computer Aided Geometric Design 16(3), 217–221 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Schaback, R.: Optimal geometric Hermite interpolation of curves. In: Dahlen, M., Lyche, T., Schumaker, L.L. (eds.) Mathematical Methods for Curves and Surface, vol. II, pp. 1–12 (1998)Google Scholar
  10. 10.
    Yong, J., Cheng, F.: Geometric Hermite curves with minimum strain energy. Computer Aided Geometric Design 21, 281–301 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Zhang, C., Cheng, F.: Removing local irregularities of NURBS surfaces by modifying highlight lines. Computer-Aided Design 30(12), 923–930 (1998)zbMATHCrossRefGoogle Scholar
  12. 12.
    Zhang, C., Zhang, P., Cheng, F.: Fairing spline curves and surfaces by minimizing energy. Computer-Aided Design 33(13), 913–923 (2001)CrossRefzbMATHGoogle Scholar
  13. 13.
    Zhang, C., Yang, X., Wang, J.: Approaches for Constrained Parametric Curve Interpolation. Journal of Computer Science and Technology 18(5), 592–597 (2003)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Jing Chi
    • 1
  • Caiming Zhang
    • 1
    • 2
  • Xiaoming Wu
    • 3
  1. 1.Department of Computer Science and TechnologyShandong Economic UniversityJi’nanP.R.China
  2. 2.School of Computer Science and TechnologyShandong UniversityJi’nanP.R.China
  3. 3.Shandong Computer Science Centerji’nanP.R.China

Personalised recommendations