Advertisement

Geometric Modeling for Interpolation Surfaces Based on Blended Coordinate System

  • Benyue Su
  • Jieqing Tan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4270)

Abstract

In this paper we present a new method for the model of interpolation surfaces by the blending of polar coordinates and Cartesian coordinate. A trajectory curve is constructed by circular trigonometric Hermite interpolation spline (CTHIS) and a profile curve is presented by C 2-continuous B-spline like interpolation spline (BSLIS). A piecewise interpolation spline surface is incorporated by the blending of CTHIS and BSLIS. In addition, scaling functions have been introduced to improve the flexibility of the model of the interpolation surfaces. On the basis of these results, some examples are given to show how the method is used to model some interesting surfaces.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alfeld, P., Neamtu, M., Schumaker, L.L.: Circular Bernstein-Bézier polynomials. In: Dæhlen, M., Lyche, T., Schumaker, L.L. (eds.) Mathematical Methods for curves and surfaces, pp. 11–20. Vanderbilt University Press (1995)Google Scholar
  2. 2.
    Alfeld, P., Neamtu, M., Schumaker, L.L.: Fitting scattered data on sphere-like surfaces using spherical splines. J. Comput. Appl. Math. 73, 5–43 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Casciola, G., Morigi, S.: Inverse spherical surfaces. Journal of Computational and Applied Mathematics 176, 411–424 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Cusimano, C., Stanley, S.: Circular Bernstein-Bézier spline approximation with knot removal. J. Comput. Appl. Math. 155, 177–185 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Gfrerrer, A., Röchel, O.: Blended Hermite interpolants. Computer Aided Geometric Design 18, 865–873 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Kochanek, D., Bartels, R.: Interpolating splines with local tension, continuity, and bias control. Computer Graphics (SIGGRAPH 1984) 18, 33–41 (1984)CrossRefGoogle Scholar
  7. 7.
    Morigi, S., Neamtu, M.: Some results for a class of generalized polynomials. Advances in computational mathematics 12, 133–149 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Piegl, L., Ma, W., Tiller, W.: An alternative method of curve interpolation. The Visual Computer 21, 104–117 (2005)CrossRefGoogle Scholar
  9. 9.
    Sánchez-Reyes, J.: Single-valued spline curves in polar coordinates. Computer Aided Design 24, 307–315 (1992)zbMATHCrossRefGoogle Scholar
  10. 10.
    Sánchez-Reyes, J.: Harmonic rational Bézier curves, p-Bézier curves and trigonometric polynomials. Computer Aided Geometric Design 15, 909–923 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Seidel, H.-P.: An intruduction to polar forms. IEEE Computer Graphics & Applications 13, 38–46 (1993)CrossRefGoogle Scholar
  12. 12.
    Seidel, H.-P.: Polar forms and triangular B-spline surfaces. In: Du, D.-Z., Hwang, F. (eds.) Euclidean Geometry and Computers, 2nd edn., pp. 235–286. World Scientific Publishing Co., Singapore (1994)Google Scholar
  13. 13.
    Su, B.Y., Tan, J.Q.: A family of quasi-cubic blended splines and applications. J. Zhejiang Univ. SCIENCE A 7, 1550–1560 (2006)zbMATHCrossRefGoogle Scholar
  14. 14.
    Tai, C.L., Loe, K.F.: Alpha-spline: a C 2 continuous spline with weights and tension control. In: Proc. of International Conference on Shape Modeling and Applications, pp. 138–145 (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Benyue Su
    • 1
    • 2
  • Jieqing Tan
    • 3
  1. 1.School of Computer & InformationHefei University of TechnologyHefeiChina
  2. 2.Department of MathematicsAnqing Teachers CollegeAnqingChina
  3. 3.Institute of Applied MathematicsHefei University of TechnologyHefeiChina

Personalised recommendations