Skip to main content

Spatial Intensity Correction of Fluorescent Confocal Laser Scanning Microscope Images

  • Conference paper
Book cover Computer Vision Approaches to Medical Image Analysis (CVAMIA 2006)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4241))

Abstract

Fluorescent confocal laser scanning microscope (CLSM) imaging has become popular in medical domain for the purpose of 3D information extraction. 3D information is extracted either by visual inspection or by automated techniques. Nonetheless, 3D information extraction from CLSM suffers from significant lateral intensity heterogeneity. We propose a novel lateral intensity heterogeneity correction technique to improve accurate image analysis, e.g., quantitative analysis, segmentation, or visualization. The proposed technique is novel in terms of its design (spatially adaptive mean-weight filtering) and application (CLSM), as well as its properties and full automation. The key properties of the intensity correction techniques include adjustment of intensity heterogeneity, preservation of fine structural details, and enhancement of image contrast. The full automation is achieved by data-driven parameter optimization and introduction of several evaluation metrics. We evaluated the performance by comparing with three other techniques, four quality metrics, and two realistic synthetic images and one real CLSM image.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chen, X., Ai, Z., Rasmussen, M., Bajcsy, P., Auvil, L., Welge, M., Leach, L., Folberg, R.: Three-dimensional reconstruction of extravascular matrix patterns and blood vessels in human uveal melanoma tissue: Preliminary findings. Invest. Ophthal. & Vis. Sci. 44, 2834–2840 (2003)

    Article  Google Scholar 

  2. Benson, D., Bryan, J., Plant, A., Gotto, A., Smith, L.: Digital Imaging fluorescence microscopy: Spatial heterogeneity of photobleaching rate constants in individual cells. J. Cell Biol. 100, 1309–1323 (1985)

    Article  Google Scholar 

  3. Jungke, M., von Seelen, W., Bielke, G., Meindl, S., et al.: A system for the diagnostic use of tissue characterizing parameters in NMR-tomography. In: Proc. of Info. Proc. in Med. Imaging, IPMI 1987, vol. 39, pp. 471–481 (1987)

    Google Scholar 

  4. Rigaut, J., Vassy, J.: High-resolution 3D images from confocal scanning laser microscopy: quantitative study and mathematical correction of the effects from bleaching and fluorescence attenuation in depth. Anal. Quant. Cytol. 13, 223–232 (1991)

    Google Scholar 

  5. Oostveldt, P.V., Verhaegen, F., Messen, K.: Heterogenous photobleaching in confocal microscopy caused by differences in refractive index and excitation mode. Cytometry 32, 137–146 (1998)

    Article  Google Scholar 

  6. Tauer, U., Hils, O.: Confocal Spectrophotometry. Sci. and Tech. Info., Sp. issue: Confocal Microscopy, CDR 4, 15–27 (2000)

    Google Scholar 

  7. Rodenacker, K., Aubele, P., Hutzler, M., Adiga, P.: Groping for quantitative digital 3-D image analysis: an approach to quantitative fluorescence in situ hybridization in thick tissue sections of prostate carcinoma. Anal. Cell. Pathol. 15, 19–29 (1997)

    Google Scholar 

  8. Irinopoulo, T., Vassy, J., Beil, M., Nicolopoulo, P., Encaoua, D., Rigaut, J.: 3-D DNA image cytometry by confocal scanning lasermicroscopy in thick tissue blocks of prostatic lesions. Cytometry 27, 99–105 (1997)

    Article  Google Scholar 

  9. Roerdink, J., Bakker, M.: An FFT-based method for attenuation correction in fluorescence confocal microscopy. J. Microsc. 169, 3–14 (1993)

    Google Scholar 

  10. Liljeborg, A., Czader, M., Porwit, A.: A method to compensate for light attenuation with depth in 3D DNA image cytometry using a confocal scanning laser microscope. J. Microsc. 177, 108–114 (1995)

    Google Scholar 

  11. Kervrann, C., Legland, D., Pardini, L.: Robust incremental compensation of the light attenuation with depth in 3D fluorescence microscopy. J. Microsc. 214, 297–314 (2004)

    Article  MathSciNet  Google Scholar 

  12. Oostveldt, P., Verhaegen, F., Messens, K.: Heterogeneous photobleaching in confocal microscopy caused by differences in refractive index and excitation mode. Cytometry 32, 137–146 (1998)

    Article  Google Scholar 

  13. Gonzalez, R., Woods, E.: Digital Image Processing, 2nd edn. Prentice Hall, Englewood Cliffs (2002)

    Google Scholar 

  14. Pizer, S.M., Zimmerman, J.B., Stabb, E.: Adaptive grey level assignment in CT scan display. J. Comp. Assist. Tomography 8, 300–305 (1984)

    Google Scholar 

  15. Pisano, E., Zong, S., Hemminger, M., De Luca, M., Johnsoton, R., Muller, K., Braeuning, M., Pizer, S.: Contrast Limited Adaptive Histogram Equalization Image Processing to Improve the Detection of Simulated Spiculations in Dense Mammograms. J. Digital Imaging 11(4), 193–200 (1998)

    Article  Google Scholar 

  16. Styner, M., Brechbuhler, C., Szekely, G., Gerig, G.: Parametric estimate of intensity inhomogeneities applied to MRI. IEEE Trans. Med. Imaging 19(3), 153–165 (2000)

    Article  Google Scholar 

  17. Sanchez-Brea, L.M., Bernabeu, E.: On the standard deviation in CCD cameras: a variogram-based technique for non-uniform images. J. Electronic Imaging 11(2), 121–126 (2002)

    Article  Google Scholar 

  18. Hu, J., Razdan, A., Nielson, G., Farin, G., Baluch, D., Capco, D.: Volumetric Segmentation Using Weibull E-SD Fields. IEEE Trans. on Vis. and Comp. Graphics 9(3) (2003)

    Google Scholar 

  19. Weisstein, E.: Least Squares Fitting–Exponential from MathWorld–A Wolfram Web Resource, http://mathworld.wolfram.com/LeastSquaresFittingExponential.html

  20. Mangin, J.: Entropy minimization for automatic correction of intensity nonuniformity Math. Method in Biomed. Image Analysis (MMBIA), 162–169 (2000)

    Google Scholar 

  21. Bajcsy, P., Groves, P.: Methodology for Hyperspectral Band Selection. Photo. Eng. and Remote Sensing J. 70, 793–802 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lee, SC., Bajcsy, P. (2006). Spatial Intensity Correction of Fluorescent Confocal Laser Scanning Microscope Images. In: Beichel, R.R., Sonka, M. (eds) Computer Vision Approaches to Medical Image Analysis. CVAMIA 2006. Lecture Notes in Computer Science, vol 4241. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11889762_13

Download citation

  • DOI: https://doi.org/10.1007/11889762_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-46257-6

  • Online ISBN: 978-3-540-46258-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics