Existing stable matching algorithms reveal the preferences of all participants, as well as the history of matches made and broken in the course of computing a stable match. This information leakage not only violates the privacy of participants, but also leaves matching algorithms vulnerable to manipulation[8,10,25].

To address these limitations, this paper proposes a private stable matching algorithm, based on the famous algorithm of Gale and Shapley[6]. Our private algorithm is run by a number of independent parties whom we call the Matching Authorities. As long as a majority of Matching Authorities are honest, our protocol correctly outputs a stable match, and reveals no other information than what can be learned from that match and from the preferences of participants controlled by the adversary. The security and privacy of our protocol are based on re-encryption mix networks and on an additively homomorphic semantically secure public-key encryption scheme such as Paillier.


Stable Match Preference List Stable Marriage Problem Passive Adversary Private Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Association of Psychology Postdoctoral and Internship Centers,
  2. 2.
    Bandela, C., Chen, Y., Kahng, A., Mandoiu, I., Zelikovsky, A.: Multiple-object XOR auctions with buyer preferences and seller priorities. In: Lai, K.K., Wang, S. (eds.) Competitive Bidding and Auctions, Kluwer Academic Publishers, DordrechtGoogle Scholar
  3. 3.
    Canadian Resident Matching Service (CaRMS),
  4. 4.
    Cramer, R., Damgård, I., Dziembowski, S., Hirt, M., Rabin, T.: Efficient multiparty computations secure against an adaptive adversary. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 311–326. Springer, Heidelberg (1999)Google Scholar
  5. 5.
    Damgård, I., Jurik, M.: A generalisation, a simplification and some applications of Paillier’s probabilistic public-key system. In: Proc. of Public Key Cryptography 2001, pp. 119–136 (2001)Google Scholar
  6. 6.
    Gale, D., Shapley, H.S.: College Admissions and the Stability of Marriage. American Mathematical Monthly (1962)Google Scholar
  7. 7.
    Fouque, P.-A., Poupard, G., Stern, J.: Sharing decryption in the context of voting or lotteries. In: Frankel, Y. (ed.) FC 2000. LNCS, vol. 1962, pp. 90–104. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. 8.
    Gale, D., Sotomayor, M.: Ms Machiavelli and the Stable Matching Problem. American Mathematical Monthly 92, 261–268 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Goldreich, O., Micali, S., Widgerson, A.: How to play any mental game. In: STOC 1987, pp. 218–229. ACM, New York (1987)CrossRefGoogle Scholar
  10. 10.
    Gusfield, D., Irving, R.: The Stable Marriage Problem: Structure and Algorithms. MIT Press, CambridgeGoogle Scholar
  11. 11.
    Jakobsson, M., Juels, A., Rivest, R.: Making mix nets robust for electronic voting by randomized partial checking. In: Proc. of USENIX 2002, pp. 339–353Google Scholar
  12. 12.
    Jakobsson, M., Schnorr, C.: Efficient Oblivious Proofs of Correct Exponentiation. In: Proc. of CMS 1999 (1999)Google Scholar
  13. 13.
    Lipmaa, H.: Verifiable homomorphic oblivious transfer and private equality test. In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 416–433. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  14. 14.
    National Matching Services Inc.,
  15. 15.
    National Resident Matching Program (NRMP),
  16. 16.
    Neff, A.: A verifiable secret shuffle and its application to e-voting. In: Proc. of ACM CCS 2001, pp. 116–125 (2001)Google Scholar
  17. 17.
    Ostrovsky, M.: Stability in supply chain networks, available on the web at
  18. 18.
    Paillier, P.: Public-Key Cryptosystems Based on Composite Degree Residuosity Classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999)Google Scholar
  19. 19.
    Roth, A.: The Economics of Matching: Stability and Incentives. Mathematics of Operations Research 7, 617–628 (1982)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Roth, A., Sotomayor, M.: Two-sided matching: a study in game-theoretic modeling and analysis. Econometric Society Monograph Series. Cambridge University Press, New York (1990)zbMATHGoogle Scholar
  21. 21.
    Al Roth’s game theory, experimental economics, and market design page. Bibliography of two-sided matching, on the web at
  22. 22.
    Santis, A.D., Crescenzo, G.D., Persiano, G., Yung, M.: On monotone formula closure of szk. In: Proc. of the IEEE FOCS 1994, pp. 454–465 (1994)Google Scholar
  23. 23.
    Scottish PRHO Allocation (SPA) scheme,
  24. 24.
    Soerensen, M.: How smart is smart money? An empirical two-sided matching model of venture capital, available on the web at
  25. 25.
    Teo, C.-P., Sethuraman, J., Tan, W.-P.: Gale-Shapley stable marriage problem revisited: strategic issues and applications. In: Cornuéjols, G., Burkard, R.E., Woeginger, G.J. (eds.) IPCO 1999. LNCS, vol. 1610, pp. 429–438. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  26. 26.
    Yao, A.C.: Protocols for secure computations. In: FOCS 1982, pp. 160–164. IEEE Computer Society Press, Los Alamitos (1982)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Philippe Golle
    • 1
  1. 1.Palo Alto Research CenterPalo AltoUSA

Personalised recommendations