Advertisement

Efficient Correlated Action Selection

  • Mikhail J. Atallah
  • Marina Blanton
  • Keith B. Frikken
  • Jiangtao Li
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4107)

Abstract

Participants in e-commerce and other forms of online collaborations tend to be selfish and rational, and therefore game theory has been recognized as particularly relevant to this area. In many common games, the joint strategy of the players is described by a list of pairs of actions, and one of those pairs is chosen according to a specified correlated probability distribution. In traditional game theory, a trusted third party mediator carries out this random selection, and reveals to each player its recommended action. In such games that have a correlated equilibrium, each player follows the mediator’s recommendation because deviating from it cannot increase a player’s expected payoff. Dodis, Halevi, and Rabin[1] described a two-party protocol that eliminates, through cryptographic means, the third party mediator. That protocol was designed and works well for a uniform distribution, but can be quite inefficient if applied to non-uniform distributions. Teague[2] has subsequently built on this work and extended it to the case where the probabilistic strategy no longer assigns equal probabilities to all the pairs of moves. Our present paper improves on the work of Teague by providing, for the same problem, a protocol whose worst-case complexity is exponentially better. The protocol also uses tools that are of independent interest.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dodis, Y., Halevi, S., Rabin, T.: A cryptographic solution to a game theoretic problem. In: Advances in Cryptology - Crypto 2000 (2000)Google Scholar
  2. 2.
    Teague, V.: Selecting correlated random actions. Financial Cryptography 3110, 181–195 (2004)CrossRefGoogle Scholar
  3. 3.
    Bárány, I.: Fair distribution protocols or how the players replace fortune. Mathe- matics of Operation Research 17, 327–341 (1992)zbMATHCrossRefGoogle Scholar
  4. 4.
    Ben-Porath, E.: Correlation without mediation: Expanding the set of equilibria outcomes by cheap pre-play procedures. Journal of Economic Theory 80, 108–122 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Gerardi, D.: Unmediated communication in games with complete and incomplete information. Journal of Economic Theory 114 (2004)Google Scholar
  6. 6.
    Lepinski, M., Micali, S., Peikert, C., Shelat, A.: Completely fair SFE and coalition-safe cheap talk. In: Symposium on Principles of Distributed Comput- ing (PODC 2004), pp. 1–10 (2004)Google Scholar
  7. 7.
    Schoenmakers, B., Tuyls, P.: Practical two-party computation based on the con- ditional gate. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 119–136. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Ambainis, A., Jakobsson, M., Lipmaa, H.: Cryptographic randomized response techniques. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp. 425–438. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. 9.
    Damgård, I., Ishai, Y.: Constant-round multiparty computation using a black-box pseudorandom generator. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 378–411. Springer, Heidelberg (2005)Google Scholar
  10. 10.
    Yao, A.: How to generate and exchange secrets. In: Proceedings of the 27th IEEE Symposium on Foundations of Computer Science, pp. 162–167. IEEE Computer Society Press, Los Alamitos (1986)Google Scholar
  11. 11.
    Goldreich, O.: The Foundations of Cryptography, vol. 2. Cambridge University Press, Cambridge (2004)CrossRefGoogle Scholar
  12. 12.
    Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999)Google Scholar
  13. 13.
    Damgård, I., Jurik, M.: A generalisation, a simplification and some applications of paillier’s probabilistic public-key system. In: Kim, K.-c. (ed.) PKC 2001. LNCS, vol. 1992, pp. 119–136. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  14. 14.
    Frikken, K., Atallah, M.: Privacy preserving route planning. In: Proceedings of the 3rd ACM Workshop on Privacy in the Electronic Society, Washington, DC, USA, pp. 8–15 (2004)Google Scholar
  15. 15.
    Aggarwal, G., Mishra, N., Pinkas, B.: Secure computation of the k th-ranked element. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 40–55. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  16. 16.
    Schnorr, C.: Efficient signature generation by smart cards. Journal of Cryptology 4, 161–174 (1991)zbMATHCrossRefGoogle Scholar
  17. 17.
    Fiat, A., Shmair, A.: How to prove yourself: Practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987)Google Scholar
  18. 18.
    Cramer, R., Damgård, I., Schoenmakers, B.: Proofs of partial knowledge and sim- plified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994)Google Scholar
  19. 19.
    Jakobsson, M., Juels, A.: Mix and match: Secure function evaluation via cipher- texts. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 162–177. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  20. 20.
    Pedersen, T.: A threshold cryptosystem without a trusted party. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 522–526. Springer, Heidelberg (1991)Google Scholar
  21. 21.
    Gennaro, R., Jarecki, S., Krawzyk, H., Rabin, T.: Secure distributed key gener- ation for discrete-log based cryptosystem. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 295–310. Springer, Heidelberg (1999)Google Scholar
  22. 22.
    Chaum, D.: Untraceable electronic mail, return addresses, and digital pseudonyms. Communications of the ACM 24(2), 84–88 (1981)CrossRefGoogle Scholar
  23. 23.
    Jakobsson, M.: A practical mix. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 448–461. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  24. 24.
    Jakobsson, M., Juels, A., Rivest, R.: Making mix nets robust for electronic voting by randomized partial checking. In: USENIX, pp. 339–353 (2002)Google Scholar
  25. 25.
    Golle, P., Jakobsson, M.: Reusable anonymous return channels. In: ACMWorkshop on Privacy in the Electronic Society (WPES 2003), pp. 94–100 (2003)Google Scholar
  26. 26.
    Ofman, Y.P.: On the algorithmic complexity of discrete functions. English trans- lation of Soviet Physics Doklady 7, 589–591 (1963)MathSciNetGoogle Scholar
  27. 27.
    Ladner, R., Fischer, M.: Parallel prefix computation. Journal of the Association for Computing Machinery (27), 831–838 (1980)zbMATHMathSciNetGoogle Scholar
  28. 28.
    Wallace, C.: A suggestion for a fast multiplier. IEEE Transactions on Electronic Computers 13, 14–17 (1964)zbMATHCrossRefGoogle Scholar
  29. 29.
    Zheng, S., Yang, M., Masetti, F.: Constructing schedulers for high-speed, high-cap acity switches/routers. International Journal of Computers and Applications 26, 4–271 (2003)Google Scholar
  30. 30.
    Brandt, F.: Fully private auctions in a constant number of rounds. In: Financial Cryptography Conference (FC 2003). Volume 2742 of LNCS. (2003) 223–238Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Mikhail J. Atallah
    • 1
  • Marina Blanton
    • 1
  • Keith B. Frikken
    • 1
  • Jiangtao Li
    • 1
  1. 1.Department of Computer SciencePurdue University 

Personalised recommendations