Advertisement

A Generic Construction for Token-Controlled Public Key Encryption

  • David Galindo
  • Javier Herranz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4107)

Abstract

Token-controlled public key encryption (TCPKE) schemes, introduced in [1], offer many possibilities of application in financial or legal scenarios. Roughly speaking, in a TCPKE scheme messages are encrypted by using a public key together with a secret token, in such a way that the receiver is not able to decrypt this ciphertext until the token is published or released. The communication overhead for releasing the token is small in comparison with the ciphertext size.

However, the fact that the same ciphertext could decrypt to different messages under different tokens was not addressed in the original work. In our opinion this is an essential security property that limits the use of this primitive in practice. In this work, we formalize this natural security goal and show that the schemes in [1]are insecure under this notion. In the second place, we propose a very simple and efficient generic construction of TCPKE schemes, starting from any trapdoor partial one-way function. This construction is obtained from a slight but powerful modification of the celebrated Fujisaki-Okamoto transformation [7]. We prove that the resulting schemes satisfy all the required security properties, in the random oracle model. Previous to this work, only particular instantiations of TCPKE schemes were proposed.

Keywords

Public key encryption provable security timed-release cryptography random oracle model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baek, J., Safavi-Naini, R., Susilo, W.: Token-controlled public key encryption. In: Deng, R.H., Bao, F., Pang, H., Zhou, J. (eds.) ISPEC 2005. LNCS, vol. 3439, pp. 386–397. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Bellare, M., Boldyreva, A., Micali, S.: Public-key encryption in a multi-user setting: security proofs and improvements. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 259–274. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  3. 3.
    Bellare, M., Desai, A., Pointcheval, D., Rogaway, P.: Relations among notions of security for public-key encryption schemes. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 26–45. Springer, Heidelberg (1998)Google Scholar
  4. 4.
    Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing efficient protocols. In: Proceedings of CCS 1993 (1993)Google Scholar
  5. 5.
    Boneh, D., Franklin, M.: Identity-Based encryption from the Weil pairing. SIAM Journal of Computing 32(3), 586–615 (2003): an extended abstract of the same title appeared at Crypto 2001zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Di Crescenzo, G., Ostrovsky, R., Rajagopalan, S.: Conditional oblivious transfer and timed-release encryption. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 74–89. Springer, Heidelberg (1999)Google Scholar
  7. 7.
    Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryption schemes. In: Wiener, M.J. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 537–554. Springer, Heidelberg (1999)Google Scholar
  8. 8.
    ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Transactions on Information Theory 31(4), 469–472 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Galindo, D., Martín, S., Morillo, P., Villar, J.L.: Fujisaki-Okamoto hybrid encryption revisited. International Journal of Information Security 4(4), 228–241 (2005)CrossRefGoogle Scholar
  10. 10.
    Garay, J., Pomerance, C.: Timed fair exchange of standard signatures. In: Wright, R.N. (ed.) FC 2003. LNCS, vol. 2742, pp. 190–207. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  11. 11.
    May, T.: Timed-release crypto. Manuscript, available at http://www.cyphernet.org/cyphernomicon/chapter14/14.5.html
  12. 12.
    Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signatures and public-key cryptosystems. Communications of the ACM 21(2), 120–126 (1978)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Rivest, R., Shamir, A., Wagner, D.: Timed-lock puzzles and timed-release crypto. Technical report, MIT/LCS/TR-684 (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • David Galindo
    • 1
  • Javier Herranz
    • 2
  1. 1.Institute for Computing and Information SciencesRadboud University NijmegenNijmegenThe Netherlands
  2. 2.Laboratoire d’Informatique (LIX) École PolytechniqueINRIA FutursPalaiseauFrance

Personalised recommendations