Skip to main content

When Interval Analysis Helps Inter-block Backtracking

  • Conference paper
Principles and Practice of Constraint Programming - CP 2006 (CP 2006)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 4204))

Abstract

Inter-block backtracking (IBB) computes all the solutions of sparse systems of non-linear equations over the reals. This algorithm, introduced in 1998 by Bliek et al., handles a system of equations previously decomposed into a set of (small) k ×k sub-systems, called blocks. Partial solutions are computed in the different blocks and combined together to obtain the set of global solutions.

When solutions inside blocks are computed with interval-based techniques, IBB can be viewed as a new interval-based algorithm for solving decomposed equation systems. Previous implementations used Ilog Solver and its IlcInterval library. The fact that this interval-based solver was more or less a black box implied several strong limitations.

The new results described in this paper come from the integration of IBB with the interval-based library developed by the second author. This new library allows IBB to become reliable (no solution is lost) while still gaining several orders of magnitude w.r.t. solving the whole system. We compare several variants of IBB on a sample of benchmarks, which allows us to better understand the behavior of IBB. The main conclusion is that the use of an interval Newton operator inside blocks has the most positive impact on the robustness and performance of IBB. This modifies the influence of other features, such as intelligent backtracking and filtering strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Benhamou, F., Goualard, F., Granvilliers, L., Puget, J.-F.: Revising Hull and Box Consistency. In: ICLP, pp. 230–244 (1999)

    Google Scholar 

  2. Bliek, C., Neveu, B., Trombettoni, G.: Using Graph Decomposition for Solving Continuous CSPs. In: Maher, M.J., Puget, J.-F. (eds.) CP 1998. LNCS, vol. 1520, pp. 102–116. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  3. Bouma, W., Fudos, I., Hoffmann, C.M., Cai, J., Paige, R.: Geometric constraint solver. Computer Aided Design 27(6), 487–501 (1995)

    Article  MATH  Google Scholar 

  4. Chabert, G.: Contributions á la résolution de Contraintes sur intervalles? Ph.D thesis, Université de Nice–Sophia Antipolis (2006) (to be defended)

    Google Scholar 

  5. Debruyne, R., Bessière, C.: Some Practicable Filtering Techniques for the Constraint Satisfaction Problem. In: Proc. of IJCAI, pp. 412–417 (1997)

    Google Scholar 

  6. Dechter, R.: Enhancement schemes for constraint processing: Backjumping, learning, and cutset decomposition. Artificial Intelligence 41(3), 273–312 (1990)

    Article  Google Scholar 

  7. Granvilliers, L.: RealPaver User’s Manual, version 0.3. University of Nantes (2003), Available at: www.sciences.univ-nantes.fr/info/perso/permanents/granvil/realpaver

  8. Granvilliers, L.: Realpaver: An interval solver using constraint satisfaction techniques. ACM Transactions on Mathematical Software (accepted for publication)

    Google Scholar 

  9. Van Hentenryck, P., Michel, L., Deville, Y.: Numerica: A Modeling Language for Global Optimization. MIT Press, Cambridge (1997)

    Google Scholar 

  10. Hoffmann, C., Lomonossov, A., Sitharam, M.: Finding solvable subsets of constraint graphs. In: Smolka, G. (ed.) CP 1997. LNCS, vol. 1330, pp. 463–477. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  11. ILOG, Av. Galliéni, Gentilly. Ilog Solver V. 5, Users’ Reference Manual (2000)

    Google Scholar 

  12. Jaulin, L., Kieffer, M., Didrit, O., Walter, E.: Applied Interval Analysis. Springer, Heidelberg (2001)

    MATH  Google Scholar 

  13. Jermann, C., Neveu, B., Trombettoni, G.: Algorithms for Identifying Rigid Subsystems in Geometric Constraint Systems. In: Proc. IJCAI, pp. 233–238 (2003)

    Google Scholar 

  14. Neveu, B., Jermann, C., Trombettoni, G.: Inter-block Backtracking: Exploiting the Structure in Continuous CSPs. In: Jermann, C., Neumaier, A., Sam, D. (eds.) COCOS 2003. LNCS, vol. 3478, pp. 15–30. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  15. Jermann, C., Trombettoni, G., Neveu, B., Mathis, P.: Decomposition of Geometric Constraint Systems: a Survey. Int. Journal of Computational Geometry and Applications (IJCGA) 16 (2006)

    Google Scholar 

  16. Latham, R.S., Middleditch, A.E.: Connectivity analysis: A tool for processing geometric constraints. Computer Aided Design 28(11), 917–928 (1996)

    Article  Google Scholar 

  17. Lebbah, Y.: Contribution á la résolution de Contraintes par Consistance Forte. Ph.D thesis, Université de Nantes (1999)

    Google Scholar 

  18. Lebbah, Y., Michel, C., Rueher, M., Daney, D., Merlet, J.P.: Efficient and safe global constraints for handling numerical constraint systems. SIAM Journal on Numerical Analysis 42(5), 2076–2097 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  19. Lhomme, O.: Consistency Tech. for Numeric CSPs. In: IJCAI, pp. 232–238 (1993)

    Google Scholar 

  20. McAllester, D.A.: Partial order backtracking. Research Note, Artificial Intelligence Laboratory. MIT (1993), ftp://ftp.ai.mit.edu/people/dam/dynamic.ps

  21. Merlet, J.-P.: Optimal design for the micro robot. In: IEEE Int. Conf. on Robotics and Automation (2002)

    Google Scholar 

  22. Neumaier, A.: Interval Methods for Systems of Equations. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  23. Wilczkowiak, M., Trombettoni, G., Jermann, C., Sturm, P., Boyer, E.: Scene Modeling Based on Constraint System Decomposition Tech. In: Proc. ICCV (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Neveu, B., Chabert, G., Trombettoni, G. (2006). When Interval Analysis Helps Inter-block Backtracking. In: Benhamou, F. (eds) Principles and Practice of Constraint Programming - CP 2006. CP 2006. Lecture Notes in Computer Science, vol 4204. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11889205_29

Download citation

  • DOI: https://doi.org/10.1007/11889205_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-46267-5

  • Online ISBN: 978-3-540-46268-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics