Skip to main content

A Numerical Aggregation Algorithm for the Enzyme-Catalyzed Substrate Conversion

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 4210))

Abstract

Computational models of biochemical systems are usually very large, and moreover, if reaction frequencies of different reaction types differ in orders of magnitude, models possess the mathematical property of stiffness, which renders system analysis difficult and often even impossible with traditional methods. Recently, an accelerated stochastic simulation technique based on a system partitioning, the slow-scale stochastic simulation algorithm, has been applied to the enzyme-catalyzed substrate conversion to circumvent the inefficiency of standard stochastic simulation in the presence of stiffness. We propose a numerical algorithm based on a similar partitioning but without resorting to simulation. The algorithm exploits the connection to continuous-time Markov chains and decomposes the overall problem to significantly smaller subproblems that become tractable. Numerical results show enormous efficiency improvements relative to accelerated stochastic simulation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bobbio, A., Trivedi, K.S.: An Aggregation Technique for the Transient Analysis of Stiff Markov Chains. IEEE Trans. Comp. C-35(9), 803–814 (1986)

    Article  Google Scholar 

  2. Bower, J.M., Bolouri, H. (eds.): Computational Modeling of Genetic and Biochemical Networks. MIT Press, Cambridge (2001)

    Google Scholar 

  3. Bremaud, P.: Markov Chains. Springer, Heidelberg (1998)

    Google Scholar 

  4. Buchholz, P.: Exact and Ordinary Lumpability in Finite Markov Chains. Journal of Applied Probability 31, 59–74 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  5. Cao, Y., Gillespie, D.T., Petzold, L.R.: The Slow-Scale Stochastic Simulation Algorithm. J. Chem. Phys. 122, 014116 (2005a)

    Article  Google Scholar 

  6. Cao, Y., Gillespie, D.T., Petzold, L.R.: Multiscale Stochastic Simulation Algorithm with Stochastic Partial Equilibrium Assumption for Chemically Reacting Systems. J. Comp. Phys. 206(2), 395–411 (2005b)

    Article  MATH  MathSciNet  Google Scholar 

  7. Cao, Y., Gillespie, D.T., Petzold, L.R.: Accelerated Stochastic Simulation of the Stiff Enzyme-Substrate Reaction. J. Chem. Phys. 123(14), 144917 (2005c)

    Article  Google Scholar 

  8. Cao, Y., Li, H., Petzold, L.R.: Efficient Formulation of the Stochastic Simulation Algorithm for Chemically Reacting Systems. J. Chem. Phys. 121(9), 4059–4067 (2004)

    Article  Google Scholar 

  9. Courtois, P.J.: Decomposability: Queueing and Computer System Applications. Academic Press, London (1977)

    MATH  Google Scholar 

  10. Cox, D.R., Miller, H.D.: Theory of Stochastic Processes. Chapman and Hall, Boca Raton (1965)

    MATH  Google Scholar 

  11. Gibson, M.A., Bruck, J.: Efficient Exact Stochastic Simulation of Chemical Systems with Many Species and Many Channels. J. Phys. Chem. A, 104, 1876–1889 (2000)

    Google Scholar 

  12. Gillespie, D.T.: A General Method for Numerically Simulating the Time Evolution of Coupled Chemical Reactions. J. Comp. Phys. 22, 403–434 (1976)

    Article  MathSciNet  Google Scholar 

  13. Gillespie, D.T.: Exact Stochastic Simulation of Coupled Chemical Reactions. J. Phys. Chem. 81(25), 2340–2361 (1977)

    Article  Google Scholar 

  14. Gillespie, D.T.: Markov Processes. Academic Press, London (1992)

    MATH  Google Scholar 

  15. Gillespie, D.T.: Approximate Accelerated Stochastic Simulation of Chemically Reacting Systems. J. Chem. Phys. 115(4), 1716–1732 (2001)

    Article  Google Scholar 

  16. Grassmann, W. (ed.): Computational Probability. Kluwer Academic Publishers, Dordrecht (2000)

    MATH  Google Scholar 

  17. Hammersley, J.M., Handscomb, D.C.: Monte Carlo Methods. Methuen (1964)

    Google Scholar 

  18. Haseltine, E.L., Rawlings, J.B.: Approximate Simulation of Coupled Fast and Slow Reactions for Chemical Kinetics. J. Chem. Phys. 117, 6959–6969 (2002)

    Article  Google Scholar 

  19. Kemeny, J.G., Snell, J.L.: Finite Markov Chains. Van Nostrand (1960)

    Google Scholar 

  20. Law, A.M., Kelton, W.D.: Simulation Modeling and Analysis, 3rd edn. McGraw-Hill, New York (2000)

    Google Scholar 

  21. Rao, C.V., Arkin, A.P.: Stochastic Chemical Kinetics and the Quasi-Steady-State Assumption: Application to the Gillespie Algorithm. J. Chem. Phys. 118, 4999–5010 (2003)

    Article  Google Scholar 

  22. Rathinam, M., Petzold, L.R., Cao, Y., Gillespie, D.T.: Stiffness in Stochastic Chemically Reacting Systems: The Implicit Tau-Leaping Method. J. Chem. Phys. 119, 12784–12794 (2003)

    Article  Google Scholar 

  23. de Souza e Silva, E., Gail, H.R.: Transient Solutions for Markov Chains. In: Grassmann, W.K. (ed.) Computational Probability, ch. 3, pp. 43–81. Kluwer Academic Publishers, Dordrecht (2000)

    Google Scholar 

  24. Stewart, W.J.: Introduction to the Numerical Solution of Markov Chains. Princeton University Press, Princeton (1994)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Busch, H., Sandmann, W., Wolf, V. (2006). A Numerical Aggregation Algorithm for the Enzyme-Catalyzed Substrate Conversion. In: Priami, C. (eds) Computational Methods in Systems Biology. CMSB 2006. Lecture Notes in Computer Science(), vol 4210. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11885191_21

Download citation

  • DOI: https://doi.org/10.1007/11885191_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-46166-1

  • Online ISBN: 978-3-540-46167-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics