Skip to main content

A Novel Method for Solving the Shape from Shading (SFS) Problem

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4222))

Abstract

We consider the generalized regularization problem of Shape-from- Shading. The traditional algorithms are to find the minimum point of the optimization problem where the regularization term is considered as the part of the objective function. However, the result of regularization may deviate from the true surface, due to the ill-posedness of the SFS problem. In this paper, we propose a novel method to solve this problem. The algorithm consists of two steps. In the first step, we recover the components of the surface in the range space of the transpose of the system matrix, from the observed image by using the Landweber iteration method, where the Pentland’s linear SFS model is adopted without any regularization. In the second step, we represent the regularization condition as an energy spline in the Fourier domain, and find the minimum value of the energy function with respect to the components of the surface in the null space of the system matrix. Quantitative and visual comparisons, using simulated data of a fractal and smooth surface, show that the proposed method significantly outperforms the Horn, Zheng-Chellappa, Tsai-Shah and Pentland linear methods for surface reconstruction.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Prados, E., Faugeras, O.: Shape From Shading: A Well-Posed Problem? In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2005), San Diego, California, vol. II, pp. 870–877 (2005)

    Google Scholar 

  2. Prados, E., Faugeras, O.: Unifying Approaches and Removing Unrealistic Assumptions in Shape from Shading: Mathematics can help. In: Proceedings of the European Conference on Computer Vision (ECCV 2004), Prague, Czech Republic (2004)

    Google Scholar 

  3. Prados, E., Faugeras, O., Camilli, F.: Shape from Shading: a well-posed problem? Technical Report RR-5297, INRIA (2004)

    Google Scholar 

  4. Horn, B.K.P.: Height and Gradient from Shading. International Journal of Computer Vision 5(1), 37–75 (1990)

    Article  Google Scholar 

  5. Zheng, Q., Chellappa, R.: Estimation of Illuminant Direction, Albedo, and Shape from Shading. IEEE Transactions on Pattern Analysis and Machine Intelligence 13(7), 680–702 (1991)

    Article  Google Scholar 

  6. Lee, C.-H., Rosenfeld, A.: Improved Methods of Estimating Shape from Shading Using the Light Source Coordinate System. Artificial Intelligence 26, 125–143 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  7. Tsai, P.-S., Shah, M.: A Fast Linear Shape from Shading. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 734–736 (1992)

    Google Scholar 

  8. Atsuta, K., Sanoworasil, M., Kondo, S.: A New Method of Estimating Shape from Shading by using a Constraint at Zero-crossings of Image Brightness. In: Proceedings of 9th International Conference on Pattern Recognition, vol. 2, pp. 666–668 (1988)

    Google Scholar 

  9. Pentland, A.: Shape Information from Shading: A Theory about Human Perception. In: Proceedings of International Conference on Computer Vision, pp. 404–413 (1988)

    Google Scholar 

  10. Ikeuchi, K., Horn, B.K.P.: Numerical Shape from Shading and Occluding Boundaries. Artificial Intelligence 17, 141–184 (1981)

    Article  Google Scholar 

  11. Pan, T.S., Yagle, A.E.: Numerical Study of Multigrid Implementations of Some Iterative Image Reconstruction Algorithms. IEEE Transactions on Medical Imaging 10(4), 572–588 (1991)

    Article  Google Scholar 

  12. Wang, H., Wang, C., Yin, W.: A Pre-Iteration Method for the Inverse Problem in Electrical Impedance Tomography. IEEE Transactions on Instrumentation and Measurement 53(4), 1093–1096 (2004)

    Article  Google Scholar 

  13. Liu, S., Fu, L., Yang, W.Q., Wang, H.G., Jiang, F.: Prior-Online Iteration for Image Reconstruction with Electrical Capacitance Tomography. IEE Proceedings- Measurement Science and Technology 151(3), 195–200 (2004)

    Article  Google Scholar 

  14. Zhao, J., Fu, W., Li, T., Wang, S.: An Image Reconstruction Algorithm Based on A Revised Regularization Method for Electrical Capacitance Tomography. Measurement Science and Technology 13, 638–640 (2002)

    Article  Google Scholar 

  15. Wang, W.Q., Spink, D.M., York, T.A., McCann, H.: An Image-Reconstruction Algorithm Based on Landweber’s Iteration Method for Electrical-Capacitance Tomography. Measurement Science and Technology 10, 1065–1069 (1999)

    Article  Google Scholar 

  16. Szeliski, R., Terzopoulos, D.: From Splines to Fractals. Computer Graphics 23(3), 51–60 (1989)

    Article  Google Scholar 

  17. Turner, M.J., Blackledge, J.M., Andrews, P.R.: Fractal Geometry in Digital Imaging. Academic Press, London (1998); 525 B Street, Suite 1900, San Diego, California 92101-4495, USA

    Google Scholar 

  18. Russ, J.C.: Fractal Surfaces. Plenum Press, New York and London (1994)

    Google Scholar 

  19. Zhang, R., Tsai, P.-S., Cryer, J.E., Shah, M.: Shape-from-Shading: A Survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 21(8), 690–706 (1999)

    Article  Google Scholar 

  20. Barrett, R., et. al.: Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods. Society for Industrial and Applied Math. (1993)

    Google Scholar 

  21. Blu, T., Unser, M.: Wavelets, fractals and radial basis functions. IEEE Transactions on Signal Processing 50(3), 543–553 (2002)

    Article  MathSciNet  Google Scholar 

  22. Kube, P., Pentland, A.: On the Imaging of Fractal Surfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence 10(5), 704–707 (1988)

    Article  MATH  Google Scholar 

  23. Worthington, P.L., Hancock, E.R.: New Constraints on Data-Closeness and Needle Map Consistency for Shape-from-Shading. IEEE Transactions on Pattern Analysis and Machine Intelligence 21(12), 1250–1267 (1999)

    Article  Google Scholar 

  24. Ragheb, H., Hancock, E.R.: A Probabilistic Framework for Specular Shape-from-Shading. Pattern Recognition 36, 407–427 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liao, Y., Zhao, Rc. (2006). A Novel Method for Solving the Shape from Shading (SFS) Problem. In: Jiao, L., Wang, L., Gao, X., Liu, J., Wu, F. (eds) Advances in Natural Computation. ICNC 2006. Lecture Notes in Computer Science, vol 4222. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11881223_90

Download citation

  • DOI: https://doi.org/10.1007/11881223_90

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-45907-1

  • Online ISBN: 978-3-540-45909-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics