Skip to main content

Detection of Individual Microbubbles Using Wavelet Transform Based on a Theoretical Bubble Oscillation Model

  • Conference paper
Advances in Natural Computation (ICNC 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4222))

Included in the following conference series:

Abstract

Detecting individual microbubbles is important for the quantification of the amount of bubbles in the tissues, determination of microvascular volume and targeted microbubble imaging. We took the advantage of a theoretical bubble oscillation model to construct a matched wavelet, i.e. bubble wavelet as mother wavelet to detect individual microbubble using wavelet transform. The experimental echoes with different levels of added noises were processed. The results showed significant improvement even for an Echo-Noise-Ratio (ENR in ) of -20 dB and the spatial location demonstrated very close agreement with the original experimental echo. This technique was much better than those based on harmonic analysis especially under the circumstance of short pulse insonation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Leighton, T.G.: The Acoustic Bubble. Academic Press, London (1994)

    Google Scholar 

  2. Miller, D.L., Williams, A.R., Gross, D.R.: Ultrasonic detection of resonant cavitation bubbles in a flow tube by their second-harmonic emissions. Ultrasonics 22, 217–224 (1984)

    Google Scholar 

  3. Leighton, T.G., Ramble, D.G., Phelps, A.D.: The detection of tethered and rising bubbles using multiple acoustic techniques. J. Acoust. Soc. Am. 101, 2626–2635 (1997)

    Article  Google Scholar 

  4. de Jong, N.: Acoustic properties of ultrasound contrast agents. PhD Dissertation Erasmus University, Rotterdam (1993)

    Google Scholar 

  5. Goldberg, B.B., Raichlen, J.S., Forsberg, B.: Ultrasound contrast agents: basic principles and clinical applications, 2nd edn. Martin Dunitz, London (2001)

    Google Scholar 

  6. de Jong, N., Frinking, P.A., Bouakaz, A., Cate, F.T.: Detection procedures of ultrasound contrast agents. Ultrasonics 38, 87–92 (2000)

    Article  Google Scholar 

  7. Unger, E., Matsunaga, T.O., Schumann, P.A., Tutsi, R.: Microbubbles in molecular imaging and therapy. Medicamundi 47, 58–65 (2003)

    Google Scholar 

  8. Lamerichs, R., Schäffter, T., Hämisch, Y., Powers, J.: Molecular Imaging: the road to better healthcare. Medicamundi 47, 2–9 (2003)

    Google Scholar 

  9. Klibanov, A.L., Rasche, P.T., Hughes, M.S., et al.: Detection of Individual Microbubbles of an Ultrasound Contrast Agent: Fundamental and Pulse Inversion Imaging. Acad. Radiol. 9, S279–S281 (2002)

    Article  Google Scholar 

  10. Droste, D.W., Silling, K., Stypmann, K.J., et al.: Contrast Transcranial Doppler Ultrasound in the Detection of Right-to-Left Shunts: Time Window and Threshold in Microbubble Numbers. Stroke 9, 1640–1645 (1999)

    Google Scholar 

  11. Droste, D.W., Lakemieier, S., Wichter, T., Stypmann, J., et al.: Optimizing the Technique of Contrast Tran-scranial Doppler Ultrasound in the Detection of Right-to-Left Shunts. Stroke 9, 2211–2216 (2002)

    Article  Google Scholar 

  12. Zheng, W., Newhouse, V.L.: Onset delay of acoustic second harmonic backscatter from bubbles or microspheres. Ultrasound Med. Biol. 24, 513–522 (1998)

    Article  Google Scholar 

  13. Shi, W.T., Forsberg, F., Raichlen, J.S., Needleman, L., Goldberg, B.B.: Pressure dependence of subharmonic signals from contrast microbubbles. Ultrasound Med. Biol. 25, 275–283 (1999)

    Article  Google Scholar 

  14. Bouakaz, A., Frigstad, S., Folkert, J., Cate, T., de Jong, D.: Super harmonic imaging: A new imaging technique for improved contrast detection. Ultrasound Med. Biol. 28, 59–68 (2002)

    Article  Google Scholar 

  15. Frisch, M., Messer, H.: Detection of a known transient signal of unknown scaling and arrival time. Process IEEE Trans. sign. process. 42, 1859–1863 (1994)

    Article  Google Scholar 

  16. Allen, J.S., May, D.J., Ferrara, K.W.: Dynamics of therapeutic ultrasound contrast agents. Ultrasound Med. Biol. 28, 805–816 (2002)

    Article  Google Scholar 

  17. Morgan, K.E., Allen, J.S., Dayton, P.A., Chomas, J.E., Klibanov, A.L., Ferrara, K.W.: Experimental and theoretical evaluation of microbubble behavior: Effect of transmitted phase and bubble size. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47, 1494–1509 (2000)

    Article  Google Scholar 

  18. Dayton, P.A.: The effects of acoustic radiation force on contrast agents: Experimental and theoretical analysis. PhD Dissertation (2001)

    Google Scholar 

  19. Daubechies, I.: Ten lectures on wavelets. SIAM, Philadelphia (1992)

    MATH  Google Scholar 

  20. Du, Y.F., Wan, M.X., Wang, S.P., et al.: Surfactant-based nano-shelled microbubble ultrasound contrast agent. Journal of Chemical Industry and Engineering 54, 807–812 (2003)

    Google Scholar 

  21. Abbate, A., Koay, J., Frankel, J., Schroeder, S.C., Das, P.: Signal detection and noise suppression using a wavelet transform signal processor: Application to ultrasonic flaw detection. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44, 14–26 (1997)

    Article  Google Scholar 

  22. Mallat, S., Hwang, W.L.: Singularity detection and processing with wavelet. IEEE Trans. Information theory 38, 617–638 (1992)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zong, Y., Li, B., Wan, M., Wang, S. (2006). Detection of Individual Microbubbles Using Wavelet Transform Based on a Theoretical Bubble Oscillation Model. In: Jiao, L., Wang, L., Gao, X., Liu, J., Wu, F. (eds) Advances in Natural Computation. ICNC 2006. Lecture Notes in Computer Science, vol 4222. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11881223_44

Download citation

  • DOI: https://doi.org/10.1007/11881223_44

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-45907-1

  • Online ISBN: 978-3-540-45909-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics