Accelerating the Radiotherapy Planning with a Hybrid Method of Genetic Algorithm and Ant Colony System

  • Yongjie Li
  • Dezhong Yao
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4222)


Computer-aided radiotherapy planning within a clinically acceptable time has the potential to improve the therapeutic ratio by providing the optimized and customized treatment plans for the tumor patients. In this paper, a hybrid method is proposed to accelerate the beam angle optimization (BAO) in the intensity modulated radiotherapy (IMRT) planning. In this hybrid method, the genetic algorithm (GA) is used to find the rough distribution of the solution, i.e., to give the initial pheromone distribution for the following ant colony system (ACS) optimization. Then, the ACS optimization is implemented to find the precise solution of the BAO problem. The comparisons of the optimization on a clinical nasopharynx case with GA, ACS and the hybrid method show that the proposed algorithm can obviously improve the computation efficiency.


Genetic Algorithm Dose Distribution Travel Salesman Problem Radiotherapy Planning Quadratic Assignment Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Webb, S.: Intensity-modulated Radiation Therapy. Institute of Physics Publishing, Bristol (2000)Google Scholar
  2. 2.
    Spirou, S.V., Chui, C.S.: A gradient inverse planning algorithm with dose-volume constraints. Med. Phys. 25, 321–333 (1998)CrossRefGoogle Scholar
  3. 3.
    Pugachev, A., Boyer, A.L., Xing, L.: Beam orientation optimization in intensity-modulated radiation treatment planning. Med. Phys. 27, 1238–1245 (2000)CrossRefGoogle Scholar
  4. 4.
    Hou, Q., Wang, J., Chen, Y., Galvin, J.M.: Beam orientation optimization for IMRT by a hybrid method of genetic algorithm and the simulated dynamics. Med. Phys. 30, 2360–2376 (2003)CrossRefGoogle Scholar
  5. 5.
    Gaede, S., Wong, E., Rasmussen, H.: An algorithm for systematic selection of beam directions for IMRT. Med. Phys. 31, 376–388 (2004)CrossRefGoogle Scholar
  6. 6.
    Djajaputra, D., Wu, Q., Wu, Y., Mohan, R.: Algorithm and performance of a clinical IMRT beam-angle optimization system. Phy. Med. Biol. 48, 3191–3212 (2003)CrossRefGoogle Scholar
  7. 7.
    Li, Y.J., Yao, J., Yao, D.Z.: Automatic beam angle selection in IMRT planning using genetic algorithm. Phy. Med. Biol. 49, 1915–1932 (2004)CrossRefGoogle Scholar
  8. 8.
    Souza, W.D., Meyer, R.R., Shi, L.: Selection of beam orientations in intensity-modulated radiation therapy using single-beam indices and integer programming. Phy. Med. Biol. 49, 3465–3481 (2004)CrossRefGoogle Scholar
  9. 9.
    Wang, X., Zhang, X., Dong, L., Liu, H., Wu, Q., Mohan, R.: Development of methods for beam angle optimization for IMRT using an accelerated exhaustive search strategy. Int. J. Radiat. Oncol. Boil. Phys. 60, 1325–1337 (2004)CrossRefGoogle Scholar
  10. 10.
    Pugachev, A., Li, J.M.S., Boyer, A.L., et al.: Role of beam orientation optimization in intensity-modulated radiation therapy. Int. J. Radiat. Oncol. Boil. Phys. 50, 551–560 (2001)CrossRefGoogle Scholar
  11. 11.
    Schreibmann, E., Xing, L.: Feasibility study of beam orientation class-solutions for prostate IMRT. Med. Phys. 31, 2863–2870 (2004)CrossRefGoogle Scholar
  12. 12.
    Dorigo, M., Stützle, T.: The ant colony optimization metaheuristic: Algorithms, applications and advances. In: Glover, F., Kochenberger, G. (eds.) Handbook of Metaheuristics. International Series in Operations Research & Management Science, vol. 57, pp. 251–285. Kluwer Academic Publishers, Norwell (2002)Google Scholar
  13. 13.
    Colomi, A., Dorigo, M., Maniezzo, V.: Distributed optimization by ant colonies. In: Varela, F., Bourgine, P. (eds.) Proc. First Europ. Conf. Artificial Life, pp. 134–142. Elsevier, Paris (1991)Google Scholar
  14. 14.
    Dorigo, M., Colorni, A., Maniezzo, V.: The ant system: Optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cybern. B. 26, 29–41 (1996)CrossRefGoogle Scholar
  15. 15.
    Dorigo, M., Gambardella, L.M.: Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Transactions on Evolutionary Computation 1, 53–66 (1997)CrossRefGoogle Scholar
  16. 16.
    Costa, D., Hertz, A.: Ants can color graphs. Journal of the Operational Research Society 48, 295–305 (1997)zbMATHCrossRefGoogle Scholar
  17. 17.
    Di Caro, G., Dorigo, M.: AntNet: Distributed stimergetic control for communication networks. Journal of Artificial Intelligence Research 9, 317–365 (1998)zbMATHGoogle Scholar
  18. 18.
    Maniezzo, V., Colorni, A.: The ant system applied to the quadratic assignment problem. IEEE Trans. Knowledge and Data Engineering 11, 769–778 (1999)CrossRefGoogle Scholar
  19. 19.
    Parpinelli, R.S., Lopes, H.S., Freitas, A.A.: Data mining with an ant colony optimization algorithm. IEEE Transactions on Evolutionary Computing 6, 321–332 (2002)CrossRefGoogle Scholar
  20. 20.
    Li, Y.J., Yao, D.Z., Chen, W.F., Zheng, J.C., Yao, J.: Ant colony system for the beam angle optimization problem in radiotherapy planning: A preliminary study. In: 2005 IEEE Congress on Evolutionary Computation Proceedings (CEC 2005), vol. 2, pp. 1532–1538 (2005)Google Scholar
  21. 21.
    Li, Y.J., Yao, D.Z., Yao, J.: Optimization of Beam Angles in IMRT Using Ant Colony Optimization Algorithm. International Journal of Radiation Oncology, Biology, Physics (ASTRO 2005) 63(suppl. 1), S492–S493 (2005)Google Scholar
  22. 22.
    Renders, J.M., Flasse, S.P.: Hybrid Methods Using Genetic Algorithms for Global Optimization. IEEE Transactions on Systems, Man, and Cybernetics-part B: Cybernetics 26, 243–258 (1996)CrossRefGoogle Scholar
  23. 23.
    Christopher, M.C., Edward, J.R., John, E.R.: Investigation of Simulated Annealing, Ant-Colony Optimization, and Genetic Algorithms for Self-Structuring Antennas. IEEE Transactions on Antennas and Propagation 52, 1007–1014 (2004)CrossRefGoogle Scholar
  24. 24.
    Yao, X.: Evolutionary Computation: Theory and Applications. World Scientific, Singapore (1999)Google Scholar
  25. 25.
    Tan, K.C., Lim, M.H., Yao, X., Wang, L.P. (eds.): Recent Advances in Simulated Evolution And Learning. World Scientific, Singapore (2004)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Yongjie Li
    • 1
  • Dezhong Yao
    • 1
  1. 1.School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina

Personalised recommendations