A Study on Construction of Time-Varying Orthogonal Wavelets

  • Guangming Shi
  • Yafang Sun
  • Danhua Liu
  • Jin Pan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4222)


Time-varying wavelets are highly desired in exploiting the nonstationarity of signals. However, it is difficult to hold the perfect reconstruction (PR) and regularity properties simultaneously in the construction of time-varying wavelets. This paper proposes a simple method to construct time-varying orthogonal wavelets based on the lattice structure of two-channel paraunitary (PU) filter banks, in which both the PR and orthogonality properties are well preserved. The regularity conditions imposed on the lattice structure are expressed in terms of the lattice coefficients and the wavelet filter banks are obtained by using an optimization technique. Then the time-varying orthogonal wavelets can be constructed by the lattice structure formulation for time-varying filter banks. Design examples show that this method is of great flexibility and effectiveness.


Lattice Structure Filter Bank Wavelet Packet Wavelet Function Wavelet Filter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Xiong, Z.X., Ramchandran, K., Herley, C., Orchard, M.T.: Flexible Tree-Structured Signal Expansions Using Time-Varying Wavelet Packets. IEEE Trans. Signal Processing 45(2), 333–345 (1997)CrossRefGoogle Scholar
  2. 2.
    Okuda, M., Mitra, S.K., Ikehara, M., Takahashi, S.: Time-Varying Wavelet Transforms with Lifting Steps for Lossless Image Compression. In: Proc. IEEE Int. Conf. Image Processing, vol. 4, pp. 48–52 (1999)Google Scholar
  3. 3.
    Sun, L.S., Wang, S., Shen, M., Beadle, P.J.: A Method for Parameter Estimation of Time-Dependent AR Model Using Higher-Order Spectra and Wavelet Basis. In: Proc. IEEE Int. Conf. Signal Processing, vol. 1, pp. 288–291 (2004)Google Scholar
  4. 4.
    Fekri, F., Sartipi, M., Mersereau, R.M., Schafer, R.W.: Convolutional Codes Using Finite-Field Wavelets: Time-Varying Codes and More. IEEE Trans. Signal Processing 53(5), 1881–1896 (2005)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Nayebi, K., Smith, M.J.T., Barnwell, T.P.: Analysis-Synthesis Systems on Time Varying Filter Banks. In: Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing, vol. 4, pp. 617–620 (1992)Google Scholar
  6. 6.
    Arrowood, J.L., Smith, M.J.T.: Exact Reconstruction Analysis/Synthesis Filter Banks with Time-Varying Filters. In: Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing, vol. 3, pp. 233–236 (1993)Google Scholar
  7. 7.
    Herley, C., Kovacevic, J., Ramachandran, K., Vetterli, M.: Tilings of the Time-Frequency Plane: Construction of Arbitrary Orthogonal Bases and Fast Tiling Algorithm. IEEE Trans. Signal Processing 41(12), 3341–3359 (1993)zbMATHCrossRefGoogle Scholar
  8. 8.
    Queiroz, R.L., Rao, K.R.: Time-Varying Lapped Transforms and Wavelet Packets. IEEE Trans. Signal Processing 41(12), 3293–3305 (1993)zbMATHCrossRefGoogle Scholar
  9. 9.
    Xia, X.-G., Suter, B.W.: Construction of Perfect Reconstruction Time-Varying FIR Multirate Filter Banks with Overlaps. In: Proc. IEEE Int. Symposium on Time-Frequency and Time-Scale Analysis, pp. 120–123 (1994)Google Scholar
  10. 10.
    Sodagar, I., Nayebi, K., Barnwell, T.P., Smith, M.J.T.: A Novel Structure for Time-Varying FIR Filter Banks. IEEE Trans. Acoust., Speech, Signal Processing 3, 157–160 (1994)Google Scholar
  11. 11.
    Herley, C., Vetterli, M.: Orthogonal Time-Varying Filter Banks and Wavelets. IEEE Trans. Signal Processing 42(10), 2650–2663 (1994)CrossRefGoogle Scholar
  12. 12.
    Nayebi, K., Sodagar, I., Barnwell, T.P.: Time-Varying Filter Banks and Wavelets. IEEE Trans. Signal Processing 42(11), 2983–2996 (1994)CrossRefGoogle Scholar
  13. 13.
    Herley, C.: Boundary Filters for Finite Length Signals and Time-Varying Filter Banks. IEEE Trans. Circuits and Systems 42, 102–114 (1995)CrossRefGoogle Scholar
  14. 14.
    Gopinath, R.A., Burrus, C.S.: Factorization Approach to Unitary Time-Varying Filter Bank Trees and Wavelets. IEEE Trans. Signal Processing 43(3), 666–680 (1995)CrossRefGoogle Scholar
  15. 15.
    Mau, J., Valot, J., Minaud, D.: Time-Varying Orthogonal Filter Banks without Transient Filters. IEEE Trans. Acoust., Speech, Signal Processing 2, 1328–1331 (1995)Google Scholar
  16. 16.
    Schwarz, C., Dasgupta, S., Fu, M.: A Lattice Structure for Perfect Reconstruction Linear Time Varying Filter Banks with All Pass Analysis Banks. IEEE Int. Conf. Acoust., Speech, Signal Processing 1, 39–42 (1997)Google Scholar
  17. 17.
    Schuller, G.: Time-Varying Filter Banks with Variable System Delay. IEEE Int. Conf. Acoust., Speech, Signal Processing 3, 2469–2472 (1997)Google Scholar
  18. 18.
    Vaidyanathan, P.P.: Multirate Systems and Filter Banks. Prentice-Hall, Englewood Cliffs (1993)zbMATHGoogle Scholar
  19. 19.
    Cohen, A., Daubechies, I., Feauveau, J.C.: Bi-orthogonal Bases of Compactly Supported Wavelets. Commun. Pure Apple Math. 45, 485–560 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Sweldens, W.: The Lifting Scheme: A Custom-Design Construction of Biorthogonal Wavelets. Appl. Comp. Harmon. Anal. 3(2), 186–200 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Kirac, A., Vaidyanathan, P.P.: Theory and Design of Optimum FIR Compaction Filters. IEEE Trans. Signal Processing 46(4), 903–919 (1998)CrossRefGoogle Scholar
  22. 22.
    Shark, L.-K., Yu, C., Smith, J.P.: Genetic Construction of Wavelet Filter Banks for Optimal Denoising of Ultrasonic Signals. IEEE Int. Conf. Signal Processing 1, 197–200 (2002)Google Scholar
  23. 23.
    Wang, H.J., Chen, T., Peng, S.L.: A Novel Method for Designing Adaptive Compaction Orthogonal Wavelet Filter Banks. In: Proc. IEEE Int. Conf. Image Processing, vol. 1, pp. 1041–1044 (2003)Google Scholar
  24. 24.
    Shi, G.M., Ding, A.L., Jiao, L.C.: A new approach for Constructing Match Wavelet to Signal Detection. IEEE Int. Conf. Communications, Circuits and Systems 2, 738–741 (2004)Google Scholar
  25. 25.
    Yang, J.-W., Tang, Y.Y., Zhang, W.-P., He, Z.-Y.: Construction of orthogonal Wavelet Filters in Terms of Unitary Transform. In: Proc. IEEE Int. conf. Machine Learning and Cybernetics, vol. 6, pp. 3908–3912 (2004)Google Scholar
  26. 26.
    Chan, S.C., Pun, C.K.S., Ho, K.L.: New Design and Realization Techniques for a Class of Perfect Reconstruction Two-Channel FIR Filter Banks and Wavelets Bases. IEEE Trans. Signal Processing 52(7), 2135–2141 (2004)CrossRefGoogle Scholar
  27. 27.
    Sersic, D.: Wavelet Filter Banks with Adaptive Number of Zero Moments. In: Proc. IEEE Int. Conf. Signal Processing, vol. 1, pp. 325–328 (2000)Google Scholar
  28. 28.
    Vaidyanathan, P.P., Hoang, P.-Q.: Lattice Structure for Optimal Design and Robust Implementation of Two-Channel Perfect Reconstruction QMF Banks. IEEE Trans. Acoust., Speech, Signal Processing 36(1), 81–94 (1988)CrossRefGoogle Scholar
  29. 29.
    Oraintara, S., Tran, T.D., Heller, P.N., Nguyen, T.Q.: Lattice Structure for Regularity Linear-Phase Filter Banks and M-band orthogonal wavelets. IEEE Trans. Signal Processing 49(11), 2659–2672 (2001)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Guangming Shi
    • 1
  • Yafang Sun
    • 1
  • Danhua Liu
    • 1
  • Jin Pan
    • 2
  1. 1.School of Electronic EngineeringXidian UniversityXi’anChina
  2. 2.Lab of Network Security and CountermeasureXi’an Communications InstituteXi’anChina

Personalised recommendations