Advertisement

Global Numerical Optimization Based on Small-World Networks

  • Xiaohua Wang
  • Xinyan Yang
  • Tiantian Su
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4222)

Abstract

Inspired by the searching model proposed by Kleinberg in a small-world network and based on a novel proposed description that an optimization can be described as a process where information transmitted from a candidate solution to the optimal solution in solution space of problems, where the solution space can also be regarded as a small-world network and each solution as a node in the small-world network, a new optimization strategy with small-world effects was formulated in this paper. The analysis and the simulation experiments in the global numerical optimization problems indicated that the method achieved a fast convergence rate and obtained a good searching performance in optimization.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Milgram, S.: The Small-World Problem. Psychology Today 1, 60–67 (1967)Google Scholar
  2. 2.
    Watts, D.J., Strogatz, S.H.: Collective dynamics of small-world networks. Nature 393, 440–442 (1998)CrossRefGoogle Scholar
  3. 3.
    Sen, P., Dasgupta, P., Chatterjee, A., et al.: Small-world properties of the Indian railway network. Phys. Rev. E. 67, 036106 (2003)CrossRefGoogle Scholar
  4. 4.
    Moore, C., Newman, M.E.J.: Epidemics and percolation in small-world networks. Phys. Rev. E. 61, 5678–5682 (2000)CrossRefGoogle Scholar
  5. 5.
    Newman, M.E.J., Watts, D.J.: Scaling and percolation in the small-world network model. Phys. Rev. E. 60, 7332–7342 (1999)CrossRefGoogle Scholar
  6. 6.
    Newman, M.E.J., Watts, D.J.: Renormalization group analysis of the small-world network model. Phys. Lett. A. 263, 341–346 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Kleinberg, J.: The Small-World Phenomenon and Decentralized Search. SIAM New 37(3), 1 (2004)Google Scholar
  8. 8.
    Liu, J., Zhong, W., Jiao, L.: A Multiagent Evolutionary Algorithm for Constraint Satisfaction Problems. IEEE Transactions on Systems, Man, and Cybernetics—PART B: Cybernetics 36(1) (February 2006)Google Scholar
  9. 9.
    Jiao, L., Liu, J., Zhong, W.: An Organizational Coevolutionary Algorithm for Classification. IEEE Transactions on Evolutionary Computation 10(1) (February 2006)Google Scholar
  10. 10.
    Jiao, L., Wang, L.: A Novel Genetic Algorithm Based on Immunity. IEEE Transactions on Systems, Man, and Cybernetics—PART A: Systems and Humans 30(5) (September 2000)Google Scholar
  11. 11.
    Watts, D.J.: Small worlds. Princeton University Press, Princeton (1999)Google Scholar
  12. 12.
    Kleinberg, J.: Navigation in a small world. Nature 406, 845 (2000)CrossRefGoogle Scholar
  13. 13.
    Mühlenbein, H., Schlierkamp, V.D.: Predictive models for the breeder genetic algorithm. Evol. Computat. 1(1), 25–49 (1993)CrossRefGoogle Scholar
  14. 14.
    Du, H.F., et al.: Adaptive Polyclonal Programming Algorithm with application. In: ICCIMA, pp. 350–355 (2003)Google Scholar
  15. 15.
    Leung, Y.W., Wang, Y.P.: An orthogonal genetic algorithm with quantization for global numerical optimization. IEEE Trans. Evol. Comput. 5(2), 41–53 (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Xiaohua Wang
    • 1
  • Xinyan Yang
    • 1
    • 2
  • Tiantian Su
    • 1
  1. 1.Institute of Intelligent Information ProcessingXidian UniversityXi’anChina
  2. 2.School of Electronics and Information EngineeringSoochow UniversitySuzhouChina

Personalised recommendations