Quantum Integration Error for Some Sobolev Classes

  • Ye Peixin
  • Hu Xiaofei
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4222)


Based on the quantum algorithms for approximating the mean of p-summable sequences, we develop quantum algorithms for approximating the integration from anisotropic and generalized Sobolev classes. Then we analyze query error of these algorithms and prove their optimality. It is proved that for these classes of functions the optimal convergence rates of quantum algorithms are essential smaller than those of classical deterministic and randomized algorithms. Our results extend recent works of Heinrich on classical Sobolev classes.


Quantum Computation Quantum Algorithm Sobolev Class Quantum Search Algorithm Multivariate Integration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dahmen, W., DeVore, R., Scherer, K.: Multi-dimensional spline approximation. SIAM J. Numer. Anal. 17, 380–402 (1980)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Fang, G., Ye, P.: Complexity of the deterministic and randomized methods for multivariate Integration problem for the Class \(H^{\Lambda}_p(I^d)\). IMA. J. Numer. Anal. 25, 473–485 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Heinrich, S.: Quantum summation with an application to integration. J. Complexity 18, 1–50 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Heinrich, S.: Quantum integration in Sobolev classes. J. Complexity 19, 19–42 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Heinrich, S.: Erich Novak, On a problem in quantum summation. J. Complexity 18, 1–18 (2003)CrossRefGoogle Scholar
  6. 6.
    Xiaofei, H., Peixin, Y.: Quantum Complexity of the Integration Problem for Anisotropic Classes. J. Comput. Math. 23(3), 233–246 (2005)MathSciNetGoogle Scholar
  7. 7.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  8. 8.
    Nikolskii, S.M.: Approximation of functions of several variables and imbedding theorems. Springer, Heidelberg (1975)Google Scholar
  9. 9.
    Novak, E.: Quantum complexity of integration. J. Complexity 17, 2–16 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Shor, P.W.: Introduction to Quantum Computing Algorithms. Birkhauser, Bonston (1999)Google Scholar
  11. 11.
    Temlyakov, V.N.: Approximation of periodic functions, New York, Nova Science (1993)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Ye Peixin
    • 1
  • Hu Xiaofei
    • 2
  1. 1.School of Mathematical Sciences and LPMCNankai UniversityTianjinChina
  2. 2.College of MathematicalSyracuse UniversityUSA

Personalised recommendations