Advertisement

Application of ACO in Continuous Domain

  • Min Kong
  • Peng Tian
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4222)

Abstract

The Ant Colony Optimization has gained great success in applications to combinatorial optimization problems, but few of them are proposed in the continuous domain. This paper proposes an ant algorithm, called Direct Ant Colony Optimization (DACO), for the function optimization problem in continuous domain. In DACO, artificial ants generate solutions according to a set of normal distribution, of which the characteristics are represented by pheromone modified by ants according to the previous search experience. Experimental results show the advantage of DACO over other ACO based algorithms for the function optimization problems of different characteristics.

Keywords

Ant Colony Optimization Function Optimization Problem Continuous Domain 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bilchev, G., Parmee, I.C.: The ant colony metaphor for searching continuous design spaces. In: Fogarty, T.C. (ed.) AISB-WS 1995. LNCS, vol. 993, pp. 25–39. Springer, Heidelberg (1995)Google Scholar
  2. 2.
    Bilchev, G., Parmee, I.C.: Constrained optimization with an ant colony search model. In: 2nd International Conference on Adaptive Computing in Engineering Design and Control, pp. 26–28. PEDC, University of Plymouth (1996)Google Scholar
  3. 3.
    Blum, C., Dorigo, M.: The hyper-cube framework for ant colony optimization. IEEE Transactions on Systems, Man and Cybernetics, Part B 34(2), 1161–1172 (2004)CrossRefGoogle Scholar
  4. 4.
    Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to Artificial Systems. Oxford University Press, Oxford (1999)zbMATHGoogle Scholar
  5. 5.
    Dorigo, M., Gambardella, L.M.: Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Transactions on Evolutionary Computation 1(1), 53–66 (1997)CrossRefGoogle Scholar
  6. 6.
    Dorigo, M., Stutzle, T.: Ant Colony Optimization. MIT Press, Boston (2003)Google Scholar
  7. 7.
    Dréo, J., Siarry, P.: A new ant colony algorithm using the heterarchical concept aimed at optimization of multiminima continuous functions. In: Dorigo, M., Di Caro, G.A., Sampels, M. (eds.) Ant Algorithms 2002. LNCS, vol. 2463, pp. 216–221. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  8. 8.
    Dreo, J., Siarry, P.: Continuous interacting ant colony algorithm based on dense heterarchy. Future Generation Computer Systems 20(5), 841–856 (2004)CrossRefGoogle Scholar
  9. 9.
    Gambardella, L.M., Taillard, E.D., Agazzi, G.: Macs-vrptw: a multiple ant colony system for vehicle routing problems with time windows. In: Corne, D., Dorgo, M., Glover, F. (eds.) New Ideas in Optimization, pp. 63–76. McGraw-Hill Ltd., London (1999)Google Scholar
  10. 10.
    Gambardella, L.M., Taillard, E.D., Dorigo, M.: Ant colonies for the quadratic assignment problem. Journal of the Operational Research Society 50(2), 167–176 (1999)zbMATHCrossRefGoogle Scholar
  11. 11.
    Mathur, M., Karale, S.B., Priye, S., Jyaraman, V.K., Kulkarni, B.D.: Ant colony approach to continuous function optimization. Ind. Eng. Chem. Res. 39(10), 3814–3822 (2000)CrossRefGoogle Scholar
  12. 12.
    Monmarche, N., Venturini, G., Slimane, M.: On how pachycondyla apicalis ants suggest a new search algorithm. Future Generation Computer Systems 16(8), 937–946 (2000)CrossRefGoogle Scholar
  13. 13.
    Socha, K.: ACO for continuous and mixed-variable optimization. In: Dorigo, M., Birattari, M., Blum, C., Gambardella, L.M., Mondada, F., Stützle, T. (eds.) ANTS 2004. LNCS, vol. 3172, pp. 25–36. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  14. 14.
    Tan, K.C., Lim, M.H., Yao, X., Wang, L.P. (eds.): Recent Advances in Simulated Evolution And Learning. World Scientific, Singapore (2004)zbMATHGoogle Scholar
  15. 15.
    Wodrich, M., Bilchev, G.: Cooperative distributed search: the ant’s way. Control & Cybernetics 3, 413–446 (1997)MathSciNetGoogle Scholar
  16. 16.
    Yao, X.: Evolutionary Computation: Theory and Applications. World Scientific, Singapore (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Min Kong
    • 1
  • Peng Tian
    • 1
  1. 1.Shanghai Jiaotong UniversityShanghaiChina

Personalised recommendations