Skip to main content

Algorithmic Invariants for Alexander Modules

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4194))

Abstract

Let G be a group given by generators and relations. It is possible to compute a presentation matrix of a module over a ring through Fox’s differential calculus. We show how to use Gröbner bases as an algorithmic tool to compare the chains of elementary ideals defined by the matrix. We apply this technique to classical examples of groups and to compute the elementary ideals of Alexander matrix of knots up to 11 crossings with the same Alexander polynomial.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, W.W., Loustaunau, P.: An introduction to Gröbner bases. Graduate Studies in Mathematics, vol. 3. American Mathematical Society, Providence (1994)

    MATH  Google Scholar 

  2. Burde, G., Zieschang, H.: Knots. de Gruyter Studies in Mathematics, vol. 5. Walter de Gruyter, Berlin, New York (1985)

    MATH  Google Scholar 

  3. Crowell, R.H., Fox, R.H.: Introduction to Knot Theory. Graduate Texts in Mathematics, vol. 57. Springer, New York (1977)

    MATH  Google Scholar 

  4. Fox, R.H., Smythe, N.: An ideal class invariant of knots. Proc. Amer. Math. Soc. 15, 707–709 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  5. Kanenobu, T.: Infinitely many knots with the same polynomial invariant. Trans. Amer. Math. Soc. 97, 158–162 (1986)

    MATH  MathSciNet  Google Scholar 

  6. Kawauchi, A.: A survey of knot theory. Birkhäuser Verlag, Basel (1996)

    MATH  Google Scholar 

  7. Kearton, C., Wilson, S.M.J.: Knot modules and the Nakanishi index. Proc. Amer. Math. Soc. 131, 655–663 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  8. Lickorish, W.B.R.: An introduction to knot theory. Graduate Texts in Mathematics, vol. 175. Springer, New York (1998)

    Google Scholar 

  9. Livingston, C.: Table of knot invariants, At: http://www.indiana.edu/~knotinfo/

  10. Pauer, F., Unterkircher, A.: Gröbner Bases for Ideals in Laurent Polynomials Rings and their Application to Systems of Difference Equations. Appl. Algebra Engrg. Comm. Comput. 9, 271–291 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  11. Sims, C.C.: Computation with finitely presented groups. Encyclopedia of Mathematics and its Applications, vol. 48. Cambridge University Press, Cambridge (1994)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gago-Vargas, J., Hartillo-Hermoso, I., Ucha-Enríquez, J.M. (2006). Algorithmic Invariants for Alexander Modules. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds) Computer Algebra in Scientific Computing. CASC 2006. Lecture Notes in Computer Science, vol 4194. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11870814_12

Download citation

  • DOI: https://doi.org/10.1007/11870814_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-45182-2

  • Online ISBN: 978-3-540-45195-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics