Viscoelasticity Modeling of the Prostate Region Using Vibro-elastography

  • S. E. Salcudean
  • Daniel French
  • S. Bachmann
  • R. Zahiri-Azar
  • X. Wen
  • W. J. Morris
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4190)


We present an ultrasound vibro-elastography system designed to acquire viscoelastic properties of the prostate and peri-prostatic tissue. An excitation stage imparts low-frequency (<20 Hz), limited amplitude (<± 2mm), broadband vibratory motion to an endorectal transducer, along a radial/transversal direction. The induced tissue motion is estimated from ultrasound radio-frequency data and is used to estimate the mechanical frequency response of tissue to the excitation at different spatial locations. This can be used to determine the spatial distribution of various mechanical parameters of tissue, such as stiffness and viscosity. Phantom and in-vivo images are presented. The results obtained demonstrate high phantom and tissue linearity and high signal-to-noise ratio.


Needle Insertion Coherence Function Prostate Cancer Detection Permanent Prostate Brachytherapy Prostate Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Zietman, A.L.: Localized prostate cancer: Brachytherapy. Curr. Treat Options Oncol. 3(5), 429–436 (2002)CrossRefGoogle Scholar
  2. 2.
    Shao, F., Ling, K.V., Ng, W.S., Wu, R.Y.: Prostate boundary detection from ultrasonographic images. Journal of Ultrasound in Medicine 22, 605–623 (2003)Google Scholar
  3. 3.
    Lagerburg, V., et al.: Measurement of prostate rotation during insertion of needles for brachytherapy. Radiothera. Oncol. 77, 318–323 (2005)CrossRefGoogle Scholar
  4. 4.
    Alterovitz, R., et al.: Needle insertion and radioactive seed implantation in human tissues: Simulation and sensitivity analysis. In: Proc. IEEE Int. Conf. Rob. Aut., vol. 2, pp. 1793–1799 (2003)Google Scholar
  5. 5.
    Nag, S., et al.: Intra-operative planning and evaluation of permanent prostate brachytherapy: Report of the American Brachytherapy Society. Int. J. Rad. Onc. Biol. Phys. 51(5), 1422–1430 (2001)CrossRefGoogle Scholar
  6. 6.
    Alterovitz, R., et al.: Sensorless planning for medical needle insertion procedures. In: Proc. IEEE/RSJ IROS Conf., vol. 4, pp. 3337–3343 (2003)Google Scholar
  7. 7.
    DiMaio, S.P., Salcudean, S.E.: Interactive simulation of needle insertion models. IEEE Trans. Biomedical Engineering 52(7), 1167–1179 (2005)CrossRefGoogle Scholar
  8. 8.
    Glozman, D., Shoham, M.: Flexible needle steering and optimal trajectory planning for percutaneous therapies. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3217, pp. 137–144. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. 9.
    Goksel, O., et al.: 3D needle-tissue interaction simulation for prostate brachytherapy. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3750, pp. 827–834. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Krouskop, T.A., Wheeler, T.M., Kallel, F., Garra, B.S., Hall, T.: Elastic moduli of breast and prostate tissues under compression. Ultrason. Imaging 20(4), 260–274 (1998)Google Scholar
  11. 11.
    Klauser, A., et al.: Real-time elastography for prostate cancer detection. J. Urology 171(Suppl. 4), 477 (2004)Google Scholar
  12. 12.
    Konig, K., et al.: Initial experiences with real-time elastography guided biopsies of the prostate. The Journal of Urology 174, 115–117 (2005)CrossRefGoogle Scholar
  13. 13.
    Turgay, E., Salcudean, S., Rohling, R.: Identifying mechanical properties of tissue by ultrasound. Ultrasound in Medicine and Biology 32(2), 221–235 (2006)CrossRefGoogle Scholar
  14. 14.
    Bendat, J.S., Piersol, A.G.: Random Data: Analysis and Measurement Procedures, 2nd edn. Wiley Interscience, Chichester (1986)zbMATHGoogle Scholar
  15. 15.
    Zahiri-Azar, R., Salcudean, S.E.: Time domain cross correlation with prior estimates. In: 3rd Int. Conf. US. Meas. Imag. Tissue Elasticity, Cumbria, UK (2004)Google Scholar
  16. 16.
    Oppenheim, A., Schafer, R.: Digital Signal Processing. Prentice-Hall, Englewood Cliffs (1975)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • S. E. Salcudean
    • 1
  • Daniel French
    • 1
  • S. Bachmann
    • 1
  • R. Zahiri-Azar
    • 1
  • X. Wen
    • 1
  • W. J. Morris
    • 2
  1. 1.Department of Electrical and Computer EngineeringUniversity of British ColumbiaCanada
  2. 2.Radiation OncologyBritish Columbia Cancer AgencyCanada

Personalised recommendations