Virtual Fly-Over: A New Visualization Technique for Virtual Colonoscopy

  • M. Sabry Hassouna
  • A. A. Farag
  • Robert Falk
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4190)


In this paper, we propose a new visualization technique for virtual colonoscopy (VC). The proposed method is called Virtual Fly-Over, which splits the entire colon anatomy into exactly two halves. Then, it assigns a virtual camera to each half to perform fly-over navigation, which has several advantages over both traditional fly-through and related methods. First, by controlling the elevation of the camera, there is no restriction on its field of view (FOV) angle (e.g., >90 o ) to maximize visualized surface areas, and hence no perspective distortion. Second, the camera viewing volume is perpendicular to each colon half, so potential polyps that are hidden behind haustral folds are easily found. Finally, because the orientation of the splitting surface is controllable, the navigation can be repeated at a different split orientation to overcome the problem of having a polyp that is divided between the two halves of the colon. Quantitative experimental results on 15 clinical datasets have shown that the average surface visibility coverage is 99.59±0.2%.


Compute Tomography Colonography Visualization Technique Virtual Colonoscopy Virtual Camera Virtual Endoscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Abbruzzese, J., Pollock, R.: Gastrointestinal Cancer, 1st edn. Springer, Heidelberg (2004)Google Scholar
  2. 2.
    Macari, M., Berman, P., Dicker, M., Milano, A., Megibow, A.: Usefulness of ct colonography in patients with incomplete colonoscopy. J. Roentgenol. 173, 561–564 (1999)Google Scholar
  3. 3.
    Baert, A.L., Sartor, K.: Virtual Endoscopy and Related 3D Techniques. Springer, Heidelberg (2001)Google Scholar
  4. 4.
    Hassouna, M.S., Farag, A.A., Falk, R.: Differential fly-throughs (DFT): A general framework for computing flight paths. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3749, pp. 654–661. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Bouix, S., Siddiqi, K., Tannenbaum, A.: Flux driven fly throughs. In: Computer Vision and Pattern Recognition, pp. 449–454 (2003)Google Scholar
  6. 6.
    Kang, D.G., Ra, J.B.: A new path planning algorithm for maximizing visibility in computed tomography colonography 24(8), 957–968 (2005)Google Scholar
  7. 7.
    Paik, D., Beaulieu, C., et al.: Visualization modes for ct colonography using cylindrical and planar map projections. Journal of Computer Tomography 24(2), 179–188 (2000)CrossRefGoogle Scholar
  8. 8.
    Haker, S., Angenent, S., Tannenbaum, A., Kikinis, R.: Nondistorting flattening maps and the 3D visualization of colon ct images 19(7), 665–671 (2000)Google Scholar
  9. 9.
    Oda, M., Kitasaka, T., Hayashi, Y., Mori, K., Suenaga, Y., Toriwaki, J.i.: Development of a navigation-based cad system for colon. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3750, pp. 696–703. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Vos, F.M., van, R.E., Serlie, I.W.O., et al.: Three-dimensional display modes for ct colonography: conventional 3D virtual colonoscopy versus unfolded cube projection. Radiology 228, 878–885 (2003)CrossRefGoogle Scholar
  11. 11.
    Geiger, B., Chefd’hotel, C., Sudarsky, S.: Panoramic views for virtual endoscopy. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3750, pp. 662–669. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
    Lorensen, W.E., Cline, H.E.: Marching cubes: A high resolution 3d surface construction algorithm. In: Proc. of SIGGRAPH, pp. 163–169 (1987)Google Scholar
  13. 13.
    Hill, F.J.: Computer Graphics Using OpenGL. Prentice Hall PTR, Englewood Cliffs (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • M. Sabry Hassouna
    • 1
  • A. A. Farag
    • 1
  • Robert Falk
    • 2
  1. 1.Computer Vision & Image Processing Laboratory (CVIP)University of LouisvilleLouisville
  2. 2.Medical imagingJewish HospitalLouisville

Personalised recommendations