Anatomical Modelling of the Musculoskeletal System from MRI

  • Benjamin Gilles
  • Laurent Moccozet
  • Nadia Magnenat-Thalmann
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4190)


This paper presents a novel approach for multi-organ (musculoskeletal system) automatic registration and segmentation from clinical MRI datasets, based on discrete deformable models (simplex meshes). We reduce the computational complexity using multi-resolution forces, multi-resolution hierarchical collision handling and large simulation time steps (implicit integration scheme), allowing real-time user control and cost-efficient segmentation. Radial forces and topological constraints (attachments) are applied to regularize the segmentation process. Based on a medial axis constrained approximation, we efficiently characterize shapes and deformations. We validate our methods for the hip joint and the thigh (20 muscles, 4 bones) on 4 datasets: average error=1.5mm, computation time=15min.


Collision Detection Medial Surface Medial Axis Dynamic Magnetic Resonance Image Deformable Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Teran, J., Sifakis, E., Blemker, S., Ng-Thow-Hing, V., Lau, C., Fedkiw, R.: Creating and simulating skeletal muscle from the visible human data set. IEEE TVCG 11, 317–328 (2005)Google Scholar
  2. 2.
    Ng-Thow-Hing, V.: Anatomically-based models for physical and geometric reconstruction of humans and other animals. Ph.D. Thesis, Department of Computer Science, University of Toronto (2000)Google Scholar
  3. 3.
    Blemker, S.S., Delp, S.L.: Three-dimensional representation of complex muscle architectures and geometries. Annals of Biomedical Eng. 33, 661–673 (2005)CrossRefGoogle Scholar
  4. 4.
    Aubel, A., Thalmann, D.: Interactive modeling of the human musculature. In: Proc. of Computer Animation (2001)Google Scholar
  5. 5.
    Terzopoulos, D., Witkin, A., Kass, M.: Symmetry-seeking models and 3d object reconstruction. International Journal of Computer Vision 1, 211–221 (1987)CrossRefGoogle Scholar
  6. 6.
    Delingette, H.: General object reconstruction based on simplex meshes. International Journal of Computer Vision 32, 111–146 (1999)CrossRefGoogle Scholar
  7. 7.
    Montagnat, J., Delingette, H.: 4d deformable models with temporal constraints: application to 4d cardiac image segmentation. MIA 9, 87–100 (2005)Google Scholar
  8. 8.
    Baraff, D., Witkin, A.: Large steps in cloth simulation. In: Proc. of SIGGRAPH 1998, Computer Graphics, vol. 32, pp. 106–117 (1998)Google Scholar
  9. 9.
    Volino, P., Magnenat-Thalmann, N.: Implementing fast cloth simulation with collision response. In: Proc. of the Int. Conference on Computer Graphics, pp. 257–268 (2000)Google Scholar
  10. 10.
    Teschner, M., Kimmerle, S., Zachmann, G., Heidelberger, B., Raghupathi, L., Fuhrmann, A., Cani, M.P., Faure, F., Magnenat-Thalmann, N., Strasser, W.: Collision detection for deformable objects. In: Proc. of Eurographics State-of-the-Art Report, pp. 119–135 (2004)Google Scholar
  11. 11.
    Kaptein, B.L., VanDerHelm, F.C.T.: Estimating muscle attachment contours by transforming geometrical bone models. Journal of Biomechanics 37, 263–273 (2004)CrossRefGoogle Scholar
  12. 12.
    Pizer, S.M., Fletcher, P.T., Joshi, S., Thall, A., Chen, J.Z., Fridman, Y., Fritsch, D.S., Gash, A.G., Glotzer, J.M., Jiroutek, M.R., Lu, C., Muller, K.E., Tracton, G., Yushkevich, P., Chaney, E.L.: Deformable m-reps for 3D medical image segmentation. International Journal of Computer Vision 55, 85–106 (2003)CrossRefGoogle Scholar
  13. 13.
    Blum, H.: A transformation for extracting new descriptors of shape. Models for the Perception of Speech and Visual Form (1967)Google Scholar
  14. 14.
    Kalra, P., Magnenat-Thalmann, N., Moccozet, L., Sannier, G., Aubel, A., Thalmann, D.: Real-time animation of realistic virtual humans. Computer Graphics and Applications 18, 42–56 (1998)CrossRefGoogle Scholar
  15. 15.
    Gilles, B., Perrin, R., Magnenat-Thalmann, N., Vallée, J.P.: Bones motion analysis from dynamic mri: acquisition and tracking. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3217, pp. 942–949. Springer, Heidelberg (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Benjamin Gilles
    • 1
  • Laurent Moccozet
    • 1
  • Nadia Magnenat-Thalmann
    • 1
  1. 1.MIRALabUniversity of GenevaGenevaSwitzerland

Personalised recommendations