Non-rigid 2D-3D Registration with Catheter Tip EM Tracking for Patient Specific Bronchoscope Simulation

  • Fani Deligianni
  • Adrian J. Chung
  • Guang-Zhong Yang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4190)


This paper investigates the use of Active Shape Models (ASM) to capture the variability of the intra-thoracic airway tree. The method significantly reduces the dimensionality of the non-rigid 2D/3D registration problem and leads to a rapid and robust registration framework. In this study, EM tracking data has been also incorporated through a probabilistic framework for providing a statistically optimal pose given both the EM and the image-based registration measurements. Comprehensive phantom experiments have been conducted to assess the key numerical factors involved in using catheter tip EM tracking for deformable 2D/3D registration.


Active Shape Model Medical Image Computing Condensation Algorithm Registration Framework Order Autoregressive Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Deligianni, F., Chung, A., Yang, G.Z.: Patient-Specific Bronchoscope Simulation with pq-Space-Based 2D/3D Registration. Computer Aided Surgery 9(5), 215–226 (2004)CrossRefGoogle Scholar
  2. 2.
    Chung, A.J., Deligianni, F., Shah, P., Wells, A., Yang, G.Z.: Vis-a-Ve: Visual Augmentation for Virtual Environments in Surgical Training. In: Proceedings of Eurographics / IEEE VGTC Symposium on Visualization, Leeds, UK, pp. 101–108 (2005)Google Scholar
  3. 3.
    Chung, A.J., Deligianni, F., Shah, P., Wells, A., Yang, G.Z.: Patient Specific Bronchoscopy Visualisation through BRDF Estimation and Disocclusion Correction. IEEE Transactions of Medial Imaging (accepted for publication) (2005)Google Scholar
  4. 4.
    Deligianni, F., Chung, A., Yang, G.Z.: Non-Rigid 2D/3D Registration for Patient Specific Bronchoscopy Simulation with Statistical Shape Modelling. IEEE Transactions on Medical Imaging (under review) (2005)Google Scholar
  5. 5.
    Garrity, J.M., Segars, W.P., Knisley, S.B., Tsui, B.M.W.: Development of a Dynamic Model for the Lung Lobes and Airway Tree in the Ncat Phantom. IEEE Transactions on Nuclear Science 50(3), 378–383 (2003)CrossRefGoogle Scholar
  6. 6.
    Mori, K., Deguchi, D., Sugiyama, J., Suenaga, Y., Toriwaki J-i Jr., C.R.M., Takabatake, H., Natori, H.: Tracking of a Bronchoscope Using Epipolar Geometry Analysis and Intensity-Based Image Registration of Real and Virtual Endoscopic Images. Medical Image Analysis 6(3), 181–336 (2002)CrossRefGoogle Scholar
  7. 7.
    Hautmann, H., Schneider, A., Pinkau, T., Peltz, F., Feussner, H.: Electromagnetic Catheter Navigation During Bronchoscopy: Validation of a Novel Method by Conventional Fluoroscopy. Chest 128(1), 382–387 (2005)CrossRefGoogle Scholar
  8. 8.
    Banovac, F., Glossop, N., Lindisch, D., Tanaka, D., Levy, E., Cleary, K.: Liver Tumor Biopsy in a Respiring Phantom with the Assistance of a Novel Electromagnetic Navigation Device. In: Dohi, T., Kikinis, R. (eds.) MICCAI 2002. LNCS, vol. 2488, pp. 200–207. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  9. 9.
    Sagi, H.C., Manos, R., Benz, R., Ordway, N.R., Connolly, P.: Electromagnetic Field-Based Image-Guided Spine Surgery Part One: Results of a Cadaveric Study Evaluating Lumbar Pedicle Screw Placement. Spine 28(17), 2013–2018 (2003)CrossRefGoogle Scholar
  10. 10.
    Mori, K., Deguchi, D., Akiyama, K., Kitasaka, T., Maurer Jr., C.R., Suenaga, Y., Takabatake, H., Mori, M., Natori, H.: Hybrid Bronchoscope Tracking Using a Magnetic Tracking Sensor and Image Registration. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3750, pp. 543–550. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Cootes, T.F., Taylor, C.J., Cooper, D.H., Graham, J.: Active Shape Models: Their Training and Application. Computer Vision and Image Understanding 61(1), 38–59 (1995)CrossRefGoogle Scholar
  12. 12.
    Isard, M., Blake, A.: Condensation-Conditional Density Propagation for Visual Tracking. International Journal of Computer Vision 29(1), 5–28 (1998)CrossRefGoogle Scholar
  13. 13.
    Deligianni, F., Chung, A., Yang, G.Z.: Predictive Camera Tracking for Bronchoscope Simulation with Condensation. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3749, pp. 910–916. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  14. 14.
    North, B., Blake, A., Isard, M., Rittscher, J.: Learning and Classification of Complex Dynamics. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(9), 1016–1034 (2000)CrossRefGoogle Scholar
  15. 15.
    Yang, G.Z., Burger, P., Firmin, D.N., Underwood, S.R.: Structure Adaptive Anisotropic Image Filtering. Image and Vision Computing 14(2), 135–145 (1994)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Fani Deligianni
    • 1
  • Adrian J. Chung
    • 1
  • Guang-Zhong Yang
    • 1
  1. 1.Department of ComputingImperial College London 

Personalised recommendations