Advertisement

Toward Interactive User Guiding Vessel Axis Extraction from Gray-scale Angiograms: An Optimization Framework

  • Wilbur C. K. Wong
  • Albert C. S. Chung
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4190)

Abstract

We propose a novel trace-based method to extract vessel axes from gray-scale angiograms without preliminary segmentations. Our method traces the axes on an optimization framework with the bounded spherical projection images and the sum of squared difference metric. It does not take alternate steps to search the next axial point and its tangent as in other trace-based algorithms, instead the novel method finds the solution simultaneously. This helps avoid U-turns of the trace and large spatial discontinuity of the axial points. Another advantage of the method is that it enables interactive user guidance to produce continuous tracing through regions that contain furcations, disease portions, kissing vessels (vessels in close proximity to each other) and thin vessels, which pose difficulties for the other algorithms and make re-initialization inevitable as illustrated on synthetic and clinical data sets.

References

  1. 1.
    Bullitt, E., et al.: Analyzing attributes of vessel populations. Medl. A 9, 39–49 (2004)Google Scholar
  2. 2.
    Farag, A.A.: et al.: Reliable fly-throughs of vascular trees. Technical report, Dept. Elec. Comput. Eng., Univ. of Louisville (2004)Google Scholar
  3. 3.
    Kita, Y., et al.: Real-time registration of 3D cerebral vessels to X-ray angiograms. In: Wells, W.M., Colchester, A.C.F., Delp, S.L. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 1125–1133. Springer, Heidelberg (1998)Google Scholar
  4. 4.
    Palágyi, K., et al.: A sequential 3D thinning algorithm and its medical applications. In: Insana, M.F., Leahy, R.M. (eds.) IPMI 2001. LNCS, vol. 2082, pp. 409–415. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  5. 5.
    Zhou, Y., Toga, A.W.: Efficient skeletonization of volumetric objects. TVCG 5, 196–209 (1999)Google Scholar
  6. 6.
    Ogniewicz, R.L., Kubler, O.: Hierarchy Voronoi skeletons. PR 28, 343–359 (1995)Google Scholar
  7. 7.
    Flasque, N., et al.: Acquisition, segmentation and tracking of the cerebral vascular tree on 3D magnetic resonance angiography images. MedI. A 5, 173–183 (2001)Google Scholar
  8. 8.
    Hassouna, M.S., et al.: Differential fly-throughs (DFT): a general framework for computing flight paths. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3749, pp. 654–661. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Hernández-Hoyos, M., et al.: A deformable vessel model with single point initialization for segmentation, quantification and visualization of blood vessels in 3D MRA. In: Delp, S.L., DiGoia, A.M., Jaramaz, B. (eds.) MICCAI 2000. LNCS, vol. 1935, pp. 735–745. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  10. 10.
    Aylward, S., Bullitt, E.: Initialization, noise, singularities, and scale in height ridge traversal for tubular object centerline extraction. TMI 21, 61–75 (2002)Google Scholar
  11. 11.
    Wink, O., et al.: Fast delineation and visualization of vessels in 3-D angiographic images. TMI 19, 337–346 (2000)Google Scholar
  12. 12.
    Shim, H., et al.: Partition-based extraction of cerebral arteries from CT angiography with emphasis on adaptive tracking. In: Christensen, G.E., Sonka, M. (eds.) IPMI 2005. LNCS, vol. 3565, pp. 357–368. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. 13.
    Krissian, K., et al.: Fast and automatic vessel centerline detection for MRA. In: ISMRM (2002)Google Scholar
  14. 14.
    van der Weide, R., et al.: CTA-based angle selection for diagnostic and interventional angiography of saccular intracranial aneurysms. TMI 17, 831–841 (1998)Google Scholar
  15. 15.
    Styner, M., et al.: Parametric estimate of intensity inhomogeneities applied to MRI. TMI 19, 153–165 (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Wilbur C. K. Wong
    • 1
  • Albert C. S. Chung
    • 1
  1. 1.Lo Kwee-Seong Medical Image Analysis Laboratory, Department of Computer Science and EngineeringThe Hong Kong University of Science and Technology 

Personalised recommendations