Cell Segmentation Using Coupled Level Sets and Graph-Vertex Coloring

  • Sumit K. Nath
  • Kannappan Palaniappan
  • Filiz Bunyak
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4190)


Current level-set based approaches for segmenting a large number of objects are computationally expensive since they require a unique level set per object (the N-level set paradigm), or \(\lceil\text{log}_2 N\rceil\) level sets when using a multiphase interface tracking formulation. Incorporating energy-based coupling constraints to control the topological interactions between level sets further increases the computational cost to O(N 2). We propose a new approach, with dramatic computational savings, that requires only four, or fewer, level sets for an arbitrary number of similar objects (like cells) using the Delaunay graph to capture spatial relationships. Even more significantly, the coupling constraints (energy-based and topological) are incorporated using just constant O(1) complexity. The explicit topological coupling constraint, based on predicting contour collisions between adjacent level sets, is developed to further prevent false merging or absorption of neighboring cells, and also reduce fragmentation during level set evolution. The proposed four-color level set algorithm is used to efficiently and accurately segment hundreds of individual epithelial cells within a moving monolayer sheet from time-lapse images of in vitro wound healing without any false merging of cells.


  1. 1.
    Morelock, M.M., et al.: Statistics of assay validation in high throughput cell imaging of nuclear factor κB nuclear translocation. ASSAY Drug Dev. Tech. 3, 483–499 (2005)CrossRefGoogle Scholar
  2. 2.
    Neumann, B., et al.: High-throughput RNAi screening by time-lapse imaging of live human cells. Nature Methods 3, 385–390 (2006)CrossRefGoogle Scholar
  3. 3.
    Sethian, J.A.: Level Set Methods and Fast Marching Methods. Cambridge University Press, New York (1999)zbMATHGoogle Scholar
  4. 4.
    Chan, T., Vese, L.: Active contours without edges. IEEE Trans. Image Process. 10, 266–277 (2001)zbMATHCrossRefGoogle Scholar
  5. 5.
    Bunyak, F., Palaniappan, K., Nath, S.K., Baskin, T.I., Dong, G.: Quantitive cell motility for in vitro wound healing using level set-based active contour tracking. In: Proc. 3rd IEEE Int. Symp. Biomed. Imaging (ISBI), Arlington, VA, pp. 1040–1043 (2006)Google Scholar
  6. 6.
    Zhang, B., Zimmer, C., Olivo-Marin, J.-C.: Tracking fluorescent cells with coupled geometric active contours. In: Proc. 2nd IEEE Int. Symp. Biomed. Imaging (ISBI), Arlington, VA, pp. 476–479 (2004)Google Scholar
  7. 7.
    Dufour, A., Shinin, V., Tajbakhsh, S., Guillén-Aghion, N., Olivo-Marin, J.-C., Zimmer, C.: Segmenting and tracking fluorescent cells in dynamic 3-D microscopy with coupled active surfaces. IEEE Trans. Image Process. 14, 1396–1410 (2005)CrossRefGoogle Scholar
  8. 8.
    Zimmer, C., Olivo-Marin, J.-C.: Coupled parametric active contours. IEEE Trans. Pattern Anal. Machine Intell. 27, 1838–1842 (2005)CrossRefGoogle Scholar
  9. 9.
    Li, C., Xu, C., Gui, C., Fox, D.: Level set evolution without re-initialization: A new variational formulation. In: Proc. IEEE Conf. Computer Vision Pattern Recognition, vol. 1, pp. 430–436 (2005)Google Scholar
  10. 10.
    Vese, L., Chan, T.: A multiphase level set framework for image segmentation using the Mumford and Shah model. Intern. J. Comput. Vis. 50, 271–293 (2002)zbMATHCrossRefGoogle Scholar
  11. 11.
    Appel, K., Haken, W.: Every planar map is four colorable. Part I. discharging. Illinois. J. Math. 21, 429–490 (1977)zbMATHMathSciNetGoogle Scholar
  12. 12.
    Appel, K., Haken, W., Koch, J.: Every planar map is four colorable. Part II. reducibility. Illinois. J. Math. 21, 491–567 (1977)zbMATHMathSciNetGoogle Scholar
  13. 13.
    Robertson, N., Sanders, D.P., Seymour, P.D., Thomas, R.: The four color theorem. J. Combin. Theory, Ser. B 70, 2–44 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Mukherjee, D.P., Ray, N., Acton, S.T.: Level set analysis for leukocyte detection and tracking. IEEE Trans. Image Process. 13, 562–672 (2001)CrossRefGoogle Scholar
  15. 15.
    Paragiois, N., Deriche, R.: Geodesic active contours and level sets for the detection and tracking of moving objects. IEEE Trans. Pattern Anal. Machine Intell. 22, 266–280 (2000)CrossRefGoogle Scholar
  16. 16.
    Seetharaman, G., Gasperas, G., Palaniappan, K.: A piecewise affine model for image registration in non-rigid motion analysis. In: Proc. IEEE Int. Conf. Image Processing, Vancouver, Canada, vol. 1, pp. 561–564 (2000)Google Scholar
  17. 17.
    Brèlaz, D.: New methods to color the vertices of a graph. Comm. ACM 22, 251–256 (1979)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Salaycik, K.J., Fagerstrom, C.J., Murthy, K., Tulu, U.S., Wadsworth, P.: Quantification of microtubule nucleation growth and dynamics in wound-edge cells. J. Cell Sci. 118, 4113–4122 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Sumit K. Nath
    • 1
  • Kannappan Palaniappan
    • 1
  • Filiz Bunyak
    • 1
  1. 1.MCVL, Department of Computer ScienceUniversity of Missouri-ColumbiaColumbiaUSA

Personalised recommendations