Skip to main content

Inferring Gene Orders from Gene Maps Using the Breakpoint Distance

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 4205))

Abstract

Preliminary to most comparative genomics studies is the annotation of chromosomes as ordered sequences of genes. Unfortunately, different genetic mapping techniques usually give rise to different maps with unequal gene content, and often containing sets of unordered neighboring genes. Only partial orders can thus be obtained from combining such maps. However, once a total order O is known for a given genome, it can be used as a reference to order genes of a closely related species characterized by a partial order P. In this paper, the problem is to find a linearization of P that is as close as possible to O in term of the breakpoint distance. We first prove an NP-complete complexity result for this problem. We then give a dynamic programming algorithm whose running time is exponential for general partial orders, but polynomial when the partial order is derived from a bounded number of genetic maps. A time-efficient greedy heuristic is then given for the general case, with a performance higher than 90% on simulated data. Applications to the analysis of grass genomes are presented.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bérard, S., Bergeron, A., Chauve, C.: Conservation of combinatorial structures in evolution scenarios. In: Lagergren, J. (ed.) RECOMB-WS 2004. LNCS (LNBI), vol. 3388, pp. 1–14. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  2. Bergeron, A., Mixtacki, J., Stoye, J.: Reversal distance without hurdles and fortresses. In: Sahinalp, S.C., Muthukrishnan, S.M., Dogrusoz, U. (eds.) CPM 2004. LNCS, vol. 3109, pp. 388–399. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  3. Blin, G., Rizzi, R.: Conserved interval distance computation between non-trivial genomes. In: Wang, L. (ed.) COCOON 2005. LNCS, vol. 3595, pp. 22–31. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  4. Bowers, J.E., Abbey, C., Anderson, A., Chang, C., Draye, X., Hoppe, A.H., Jessup, R., Lemke, C., Lennington, J., Li, Z.K., Lin, Y.R., Liu, S.C., Luo, L.J., Marler, B., Ming, R.G., Mitchell, S.E., Qiang, D., Reischmann, K., Schulze, S.R., Skinner, D.N., Wang, Y.W., Kresovich, S., Schertz, K.F., Paterson, A.H.: A high-density genetic recombination map of sequence-tagged sites for Sorghum, as a framework for comparative structural and evolutionary genomics of tropical grains and grasses. Genetics (2003)

    Google Scholar 

  5. Figeac, M., Varré, J.S.: Sorting by reversals with common intervals. In: Jonassen, I., Kim, J. (eds.) WABI 2004. LNCS (LNBI), vol. 3240, pp. 26–37. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  6. Floyd, R.W.: Algorithm 97: Shortest path. Communications of the ACM (1962)

    Google Scholar 

  7. Gale, M.D., Devos, K.M.: Comparative genetics in the grasses. Proceedings of the National Academy of Sciences USA 95, 1971–1974 (1998)

    Article  Google Scholar 

  8. Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman and Company, New York (1979)

    MATH  Google Scholar 

  9. Hannenhalli, S., Pevzner, P.A.: Transforming cabbage into turnip (polynomial algorithm for sorting signed permutations by reversals). Journal of the ACM 48, 1–27 (1999)

    Article  MathSciNet  Google Scholar 

  10. Jackson, B.N., Aluru, S., Schnable, P.S.: Consensus genetic maps: a graph theory approach. In: IEEE Computational Systems Bioinformatics Conference (CSB 2005), pp. 35–43 (2005)

    Google Scholar 

  11. Keller, B., Feuillet, C.: Colinearity and gene density in grass genomes. Trends Plant Sci. 5, 246–251 (2000)

    Article  Google Scholar 

  12. Lander, S.E., Green, P., Abrahamson, J., Barlow, A., Daly, M.J., et al.: MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1, 174–181 (1987)

    Article  Google Scholar 

  13. Menz, M.A., Klein, R.R., Mullet, J.E., Obert, J.A., Unruh, N.C., Klein, P.E.: A High-Density Genetic Map of Sorghum Bicolor (L.) Moench Based on 2926 Aflp, Rflp and Ssr Markers. Plant Molecular Biology (2002)

    Google Scholar 

  14. Pevzner, P.A., Tesler, G.: Human and mouse genomic sequences reveal extensive breakpoint reuse in mammalian evolution. Proc. Natl. Acad. Sci. USA 100, 7672–7677 (2003)

    Article  Google Scholar 

  15. Polacco, M.L., Coe, Jr., E.: IBM neighbors: a consensus GeneticMap (2002)

    Google Scholar 

  16. Sankoff, D., Zheng, C., Lenert, A.: Reversals of fortune. In: McLysaght, A., Huson, D.H. (eds.) RECOMB 2005. LNCS (LNBI), vol. 3678, pp. 131–141. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  17. Yap, I.V., Schneider, D., Kleinberg, J., Matthews, D., Cartinhour, S., McCouch, S.R.: A graph-theoretic approach to comparing and integrating genetic, physical and sequence-based maps. Genetics 165, 2235–2247 (2003)

    Google Scholar 

  18. Zheng, C., Lenert, A., Sankoff, D.: Reversal distance for partially ordered genomes. Bioinformatics 21 (in press, 2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Blin, G., Blais, E., Guillon, P., Blanchette, M., El-Mabrouk, N. (2006). Inferring Gene Orders from Gene Maps Using the Breakpoint Distance. In: Bourque, G., El-Mabrouk, N. (eds) Comparative Genomics. RCG 2006. Lecture Notes in Computer Science(), vol 4205. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11864127_9

Download citation

  • DOI: https://doi.org/10.1007/11864127_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44529-6

  • Online ISBN: 978-3-540-44530-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics