Skip to main content

A PQ Framework for Reconstructions of Common Ancestors and Phylogeny

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 4205))

Abstract

Various international efforts are underway to catalog the genomic similarities and variations in the human population. Some key discoveries such as inversions and transpositions within the members of the species have also been made over the years. The task of constructing a phylogeny tree of the members of the same species, given this knowledge and data, is an important problem. In this context, a key observation is that the “distance” between two members, or member and ancestor, within the species is small. In this paper, we pose the tree reconstruction problem exploiting some of these peculiarities. The central idea of the paper is based on the notion of minimal consensus PQ tree T of sequences introduced in [29]. We use a modified PQ structure (termed oPQ) and show that both the number and size of each T is \(\mathcal{O}(1)\). We further show that the tree reconstruction problem is statistically well-defined (Theorem [7]) and give a simple scheme to construct the phylogeny tree and the common ancestors. Our preliminary experiments with simulated data look very promising.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bergeron, A.: A very elementary presentation of the hannenhalli-pevzner theory. In: Amir, A., Landau, G.M. (eds.) CPM 2001. LNCS, vol. 2089, pp. 106–117. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  2. Bergeron, A., Stoye, J.: On the similarity of sets of permutations and its applications to genome comparison. In: Warnow, T.J., Zhu, B. (eds.) COCOON 2003. LNCS, vol. 2697, pp. 68–79. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  3. Bloom, S.: Using genetics to unearth our path on earth. J. of Clinical Investigation 115, 1395 (2005)

    Google Scholar 

  4. Bourque, G., Pevzner, P.A.: Genome-scale evolution: Reconstructing gene orders in the ancestral species. In: Genome Research, pp. 26–36. Cold Spring Harbor Laboratory Press (2002)

    Google Scholar 

  5. Cann, R.L., Stoneking, M., Wilson, A.C.: Mitochondrial DNA and human evolution. Nature 356, 389–390 (1992)

    Google Scholar 

  6. Caprara, A.: Formulations and complexity of multiple sorting by reversals. In: Proceedings of the Annual Conference on Computational Molecular Biology (RECOMB 1999), pp. 84–93. ACM Press, New York (1999)

    Chapter  Google Scholar 

  7. The International HapMap Consortium. The International HapMap Project. Nature, 426, 789–796 (2003)

    Google Scholar 

  8. Eres, R., Landau, G., Parida, L.: A combinatorial approach to automatic discovery of cluster-patterns. In: Benson, G., Page, R.D.M. (eds.) WABI 2003. LNCS (LNBI), vol. 2812, pp. 139–150. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  9. Kakizuka, A., et al.: Chromosomal translocation t(15;17) in human acute promyelocytic leukemia fuses rar alpha with a novel putative transcription factor, PML. Cell 66(4), 663–674 (1991)

    Article  Google Scholar 

  10. Kakizuka, A., et al.: Identification of novel genes, SYT and SSX, involved in the t(X;18)(p11.2;q11.2) translocation found in human synovial sarcoma. Nature Genetics 7, 502–508 (1994)

    Article  Google Scholar 

  11. Tilford, C.A., et al.: A physical map of the human Y chromosome. Nature 409, 943–945 (2001)

    Article  Google Scholar 

  12. Lakich, D., et al.: Inversions disrupting the factor VIII gene are a common casue of severe haemophilia. Nature Genetics 5, 236–241 (1993)

    Article  Google Scholar 

  13. Kehrer-Sawatzki, H., et al.: Molecular characterizations of the pericentric inversion that causes difference between chimpanzee chromosome 19 and human chromosome 17. Am J. of Hum. Genetics 71, 375–388 (2002)

    Article  Google Scholar 

  14. Stefansson, H., et al.: A common inversion under selection in europeans. Nat. genetics 37(2), 129–137 (2005)

    Article  Google Scholar 

  15. Cosner, M.E., et al.: An empirical comparison of phylogenetic methods on chloroplast gene order data in campanulaceae. Comparative Genomics: Empirical and Analytical Approaches to Gene Order Dynamics, Map Alignment, and the Evolution of Gene Families (2000)

    Google Scholar 

  16. Pettenati, M.J., et al.: Paracentric inversions in humans: a review of 446 paracentric inversions with presentations of 120 new cases. Am J. of Med. Genetics 55, 171–187 (1995)

    Article  Google Scholar 

  17. Bondeson, M.L., et al.: Inversion of the IDS gene resulting from recombination with IDS-related sequences is a common cause of the Hunter syndrome. Molecular Genetics 4, 615–621 (1995)

    Article  Google Scholar 

  18. Pletcher, M.T., et al.: Use of comparative physical and sequence mapping to annotate mouse chromosome 16 and human chromosome 21. Genomics 74, 45–54 (2001)

    Article  Google Scholar 

  19. Giglio, S., et al.: Olfactory receptor-gene clusters, genomic inversion polymorphisms and common chromosome rearrangements. Am J. of Hum. Genetics 68, 874–883 (2001)

    Article  Google Scholar 

  20. Felsenstein, J.: Inferring phylogenies. Sinauer Associates (2004)

    Google Scholar 

  21. Gersen, S.L., Keagle, M.B.: Principles of Clinical Cytogenetics. Humana Press (2004)

    Google Scholar 

  22. Gusfield, D.: Algorithms on strings, trees and sequencess: computer science and computational biology. Cambridge University Press, New York (1997)

    Book  MATH  Google Scholar 

  23. Hannenhalli, S., Pevzner, P.A.: Transforming cabbage into turnip: polynomial algorithm for sorting signed permutations by reversals. J. of ACM 46, 1–27 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  24. Huynen, M.A., Snel, B., Bork, P.: Inversions and the dynamics of eukaryotic gene order. Trends in Genetics 17, 304–306 (2001)

    Article  Google Scholar 

  25. Booth, K., Leukar, G.: Testing for the consecutive ones property, interval graphs, and graph planarity using pq-tree algorithms. Journal of Computer and System Sciences 13, 335–379 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  26. Kaplan, H., Shamir, R., Tarjan, R.E.: A faster and simpler algorithm for sorting signed permutations by reversals. SIAM J. of Computing 29, 880–892 (1999)

    Article  MathSciNet  Google Scholar 

  27. Karim, M.E., Parida, L., Lakhotia, A.: Using permutation patterns for content-based phylogeny. Lecture Notes in Bioinformatics (to appear, 2006)

    Google Scholar 

  28. Feuk, L., Macdonald, J.R., Tang, T., Carson, A.R., Li, A.M., Rao, M.G., Khaja, R., Scherer, S.W.: Discovery of human inversion polymorphisms by comparative analysis of human and chimpanzee DNA sequence assemblies. PLoS Genetics 1(4) (2005)

    Google Scholar 

  29. Landau, G., Parida, L., Weimann, O.: Using PQ trees for comparative genomics. In: Apostolico, A., Crochemore, M., Park, K. (eds.) CPM 2005. LNCS, vol. 3537, pp. 128–143. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  30. Sankoff, D.: Edit distance for genome comparison based on non-local operations. In: Proc. of the Third Symp. on Comp. Pattern Matching, pp. 121–135. Springer, Heidelberg (1992)

    Google Scholar 

  31. Sankoff, D., Blanchette, M.: Multiple genome rearrangement and breakpoint phylogeny. Journal of Computational Biology 5(3), 555–570 (1998)

    Article  Google Scholar 

  32. Sankoff, D., Leduc, G., Antoine, N., Paquin, B., Lang, B., Cedergren, R.: Gene order comparisons for phylogenetic inference: Evolution of the mitochondrial genome. Proc. Nat. Acad. Sci. 89, 6575–6579 (1992)

    Article  Google Scholar 

  33. Small, K., Iber, J., Warren, S.T.: Emerin deletion reveals a common X-chromosome inversion mediated by inverted repeats. Nature Genetics 16, 96–99 (1997)

    Article  Google Scholar 

  34. Sturtevant, A.H.: Genetic studies on Drosophila melanogaster. Genetics 5, 488–500 (1920)

    Google Scholar 

  35. Waterman, M.S.: An Introduction to Computational Biology: Maps, Sequences and Genomes. Chapman Hall, Boca Raton (1995)

    Google Scholar 

  36. http://www.nationalgeographic.com/genographic (2005)

  37. Yancopoulos, S., Attie, O., Friedberg, R.: Efficient sorting of genomic permutations by translocation, inversion and block interchange. Bioinformatics 21(16), 3340–3346 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Parida, L. (2006). A PQ Framework for Reconstructions of Common Ancestors and Phylogeny. In: Bourque, G., El-Mabrouk, N. (eds) Comparative Genomics. RCG 2006. Lecture Notes in Computer Science(), vol 4205. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11864127_12

Download citation

  • DOI: https://doi.org/10.1007/11864127_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44529-6

  • Online ISBN: 978-3-540-44530-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics