Skip to main content

Coupling Bayesian Networks with GIS-Based Cellular Automata for Modeling Land Use Change

  • Conference paper
Book cover Geographic Information Science (GIScience 2006)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 4197))

Included in the following conference series:

Abstract

Complex systems theory and Cellular Automata (CA) are widely used in geospatial modeling. However, existing models have been limited by challenges such as handling of multiple datasets, parameter definition and the calibration procedures in the modeling process. Bayesian network (BN) formalisms provide an alternative method to address the drawbacks of these existing models. This study proposes a hybrid model that integrates BNs, CA and Geographic Information Systems (GIS) to model land use change. The transition rules of the CA model are generated from a graphical formalism where the key land use drivers are represented by nodes and the dependencies between them are expressed by conditional probabilities extracted from historical spatial datasets. The results indicate that the proposed model is able to realistically simulate and forecast spatio-temporal process of land use change. Further, it forms the basis for new synergies in CA model design that can lead to improved model outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Goodchild, M.E.: Geographic information science and systems for environmental management. Annu. Rev. Env. Resour. 28, 493–519 (2003)

    Article  Google Scholar 

  2. Longley, P.: Geographical information systems and science. Wiley, Chichester (2005)

    Google Scholar 

  3. Dragicevic, S., Marceau, D.J.: A fuzzy set approach for modeling time in GIS. International Journal of Geographical Information Science 14, 225–245 (2000)

    Article  Google Scholar 

  4. Allen, P.M.: Cities and regions as evolutionary complex systems. Geographical Systems 4, 103–130 (1997)

    MATH  Google Scholar 

  5. Batty, M., Longley, P.: Fractal cities: a geometry of form and function. Academic Press, London (1994)

    MATH  Google Scholar 

  6. Portugali, J.: Self-organization and the city. Springer, Berlin (2000)

    MATH  Google Scholar 

  7. Yeh, A.G., Li, X.: A constrained CA model for the simulation and planning of sustainable urban forms by using GIS. Environment and Planning B-Planning & Design 28, 733–753 (2001)

    Article  Google Scholar 

  8. Torrens, P.M., O’Sullivan, D.: Cities, cells, and complexity: developing a research agenda for urban geocomputation. In: Carlisle, B.H., Abrahart, R.J. (eds.) 5th International Conference on GeoComputation. GeoComputation CD-ROM, University of Greenwich, UK (2000)

    Google Scholar 

  9. White, R., Engelen, G.: High-resolution integrated modelling of the spatial dynamics of urban and regional systems. Computers, Environment and Urban Systems 24, 383–400 (2000)

    Article  Google Scholar 

  10. Batty, M.: Urban evolution on the desktop: simulation with the use of extended cellular automata. Environment and Planning A 30, 1943–1967 (1998)

    Article  Google Scholar 

  11. O’Sullivan, D., Torrens, P.M.: Cellular models of urban systems. University College London, The Centre for Advanced Spatial Analysis, London, UK (2000)

    Google Scholar 

  12. Wu, F., Webster, C.J.: Simulation of land development through the integration of cellular automata and multicriteria evaluation. Environment and Planning B-Planning & Design 25, 103–126 (1998)

    Article  Google Scholar 

  13. Li, X., Yeh, A.G.O.: Urban simulation using principal components analysis and cellular automata for land-use planning. Photogrammetric Engineering and Remote Sensing 68, 341–351 (2002)

    Google Scholar 

  14. Yeh, A.G.O., Li, X.: Simulation of development alternatives using neural networks, cellular automata, and GIS for urban planning. Photogrammetric Engineering and Remote Sensing 69, 1043–1052 (2003)

    Google Scholar 

  15. Charniak, E.: Bayesian Networks without Tears. AI. Mag. 12, 50–63 (1991)

    Google Scholar 

  16. Heckerman, D., Mamdani, A., Wellman, M.P.: Real-World Applications of Bayesian Networks - Introduction. Commun. ACM 38, 24–26 (1995)

    Article  Google Scholar 

  17. Little, L.R., Kuikka, S., Punt, A.E., Pantus, F., Davies, C.R., Mapstone, B.D.: Information flow among fishing vessels modelled using a Bayesian network. Environmental Modelling & Software 19, 27–34 (2004)

    Article  Google Scholar 

  18. Stassopoulou, A., Petrou, M., Kittler, J.: Application of a Bayesian network in a GIS based decision making system. International Journal of Geographical Information Science 12, 23–45 (1998)

    Article  Google Scholar 

  19. Pearl, J.: Probabilistic reasoning in intelligent systems: networks of plausible inference. Morgan Kaufmann Publishers, San Mateo (1988)

    Google Scholar 

  20. Buntine, W.L.: A guide to the literature on learning probabilistic networks from data. IEEE T Knowl. Data En. 8, 195–210 (1996)

    Article  Google Scholar 

  21. Jordan, M.I., Sejnowski, T.J.: Graphical models: foundations of neural computation. MIT Press, Cambridge (2001)

    MATH  Google Scholar 

  22. Bayes, T., Price, R., Canton, J., Deming, W.E., Molina, E.C.: Facsimiles of two papers by Bayes I. An essay toward solving a problem in the doctrine of chances, with Richard Price’s forward and discussion; Phil. Trans. Royal Soc., pp. 370–418 (1763) With a commentary by Molina II, E.C., A letter on asymptotic series from Bayes to John Canton, pp. 269–271 of the same volume. With a commentary by Edwards Deming, W. Hafner Pub. Co., New York (1963)

    Google Scholar 

  23. Batty, M.: Cellular automata and urban form: a primer. Journal of American Planning Association 63, 266–274 (1997)

    Article  Google Scholar 

  24. Zhou, J., Civco, D.L.: Using genetic learning neural networks for spatial decision making in GIS. Photogrammetric Engineering and Remote Sensing 62, 1287–1295 (1996)

    Google Scholar 

  25. Neapolitan, R.E.: Learning Bayesian networks. Prentice Hall, Harlow (2003)

    Google Scholar 

  26. Varis, O.: A belief network approach to optimization and parameter estimation: application to resource and environmental management. Artif. Intell. 101, 135–163 (1998)

    Article  MATH  Google Scholar 

  27. Kocabas, V., Dragicevic, S.: Assessing cellular automata model behaviour using sensitivity analysis approach. Computers, Environment and Urban Systems (in press)

    Google Scholar 

  28. Sanguesa, R., Burrell, P.: Application of Bayesian Network learning methods to Waste Water Treatment Plants. Appl. Intell. 13, 19–40 (2000)

    Article  Google Scholar 

  29. Buntine, W.L.: Operations for learning with graphical models. Journal of artificial intelligence research 2, 159–225 (1994)

    Google Scholar 

  30. Heckerman, D., Geiger, D., Chickering, D.M.: Learning Bayesian Networks - the Combination of Knowledge and Statistical-Data. Mach. Learn. 20, 197–243 (1995)

    MATH  Google Scholar 

  31. Cooper, G.F., Herskovits, E.: A Bayesian Method for the Induction of Probabilistic Networks from Data. Mach. Learn. 9, 309–347 (1992)

    MATH  Google Scholar 

  32. Cheng, J., Greiner, R., Kelly, J., Bell, D., Liu, W.R.: Learning Bayesian networks from data: An information-theory based approach. Artif. Intell. 137, 43–90 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  33. Heckerman, D.: A tutorial on learning with Bayesian networks. In: Jordan, M.I. (ed.) Learning in graphical models, pp. 301–354. MIT Press, Cambridge (1999)

    Google Scholar 

  34. Jensen, F.V., Lauritzen, S., Olesen, K.G.: Bayesian updating in causal probabilistic networks by local computations. Computational Statistics Quarterly 4, 269–282 (1990)

    MathSciNet  Google Scholar 

  35. Murphy, K.: The Bayes Net Toolbox for Matlab. Computing Science and Statistics 33 (2001)

    Google Scholar 

  36. Menard, A., Marceau, D.J.: Exploration of spatial scale sensitivity in geographic cellular automata. Environment and Planning B-Planning & Design 32, 693–714 (2005)

    Article  Google Scholar 

  37. Dietzel, C., Clarke, K.: The effect of disaggregating land use categories in cellular automata during model calibration and forecasting. Computers. Environment and Urban Systems 30, 78–101 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kocabas, V., Dragicevic, S. (2006). Coupling Bayesian Networks with GIS-Based Cellular Automata for Modeling Land Use Change. In: Raubal, M., Miller, H.J., Frank, A.U., Goodchild, M.F. (eds) Geographic Information Science. GIScience 2006. Lecture Notes in Computer Science, vol 4197. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11863939_15

Download citation

  • DOI: https://doi.org/10.1007/11863939_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44526-5

  • Online ISBN: 978-3-540-44528-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics