Skip to main content

Parallel Simulation of Asynchronous Cellular Automata Evolution

  • Conference paper
Cellular Automata (ACRI 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4173))

Included in the following conference series:

Abstract

For simulating physical and chemical processes on molecular level asynchronous cellular automata with probabilistic transition rules are widely used being sometimes referred to as Monte-Carlo methods. The simulation requires huge cellular space and millions of iterative steps for obtaining the CA evolution representing the real scene of the process. This may be achieved by allocating the CA evolution program onto a multiprocessor system. As distinct from the synchronous CAs which is extremely efficient, the asynchronous case of parallel implementation is stiff. To improve the situation we propose a method for approximating asynchronous CA by a superposition of a number of synchronous ones, each being applied to locally separated blocks forming a partition of the cellular array.

Supported by 1)Presidium of Russian Academy of Sciences, Basic Research Program N 14.15 (2006), 2) Siberian Branch of Russian Academy of Sciences, Integration Project 29 (2006).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Neizvestny, I.G., Shwartz, N.L., Yanovitskaya, Z.S., Zverev, A.V.: 3D-model of epitaxial growth on porous {111} and {100} Si surfaces. Computer Physics Communications 147, 272–275 (2002)

    Article  MATH  Google Scholar 

  2. Ziff, R.M., Gulari, E., Bershad, Y.: Kinetic phase transitions in irreversible surface-reaction model. Physical Review Letters 56, 2553–2558 (1986)

    Article  Google Scholar 

  3. Choppard, B., Droz, M.: Cellular automata approach to nonequilibrium phase transition in a surface reaction model; static and and dynamic propereties. Journ.of Physics. A Mathenatical and General 21, 205–211 (1988)

    Article  Google Scholar 

  4. Elokhin, V.I., Latkin, E.I., Matveev, A.V., Gorodetskii, V.V.: Application of Statistical Lattice Models to the Analysis of Oscillatory and Autowave Processes on the Reaction of Carbon Monoxide Oxidation over Platinum and Palladium Surfaces. Kinetics and Catalysis 5, 672–700 (2003)

    Google Scholar 

  5. Makeev, A.G.: Coarse bifurcation analysis of kinetic Monte Carlo simulations: a lattice-gas model with lateral interactions. Journal of chemical physics 18, 8229–8240 (2002)

    Article  Google Scholar 

  6. Nedea, S.V., Lukkien, J.J., Jansen, A.P.J., Hilbers, P.A.J.: Methods for parallel simulations of surface reactions. arXiv:physics/0209017, vol. 1(4), pp. 1–8 (2002)

    Google Scholar 

  7. Wolfram, S.: A New Kind of Science. Wolfram Media Inc., Champain (2002)

    MATH  Google Scholar 

  8. Achasova, S., Bandman, O., Markova, V., Piskunov, S.: Parallel Substitution Algorithm. Theory and Application. World Scientific, Singapore (1994)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bandman, O. (2006). Parallel Simulation of Asynchronous Cellular Automata Evolution. In: El Yacoubi, S., Chopard, B., Bandini, S. (eds) Cellular Automata. ACRI 2006. Lecture Notes in Computer Science, vol 4173. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11861201_8

Download citation

  • DOI: https://doi.org/10.1007/11861201_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40929-8

  • Online ISBN: 978-3-540-40932-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics