Skip to main content

A Cellular Automata Model for Adaptive Sympatric Speciation

  • Conference paper
Cellular Automata (ACRI 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4173))

Included in the following conference series:

  • 2214 Accesses

Abstract

The emergence of new species is one of the trickiest issues of evolutionary biology. We propose a cellular automata model to investigate the possibility that speciation proceeds in sympatry, focusing on the importance of the structure of the landscape on the likelihood of speciation. The conditions for speciation are shown to be limited whatever the landscape being considered, although habitat structure best favours the emergence of new species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bagnoli, F., Bezzi, M.: Speciation as Pattern Formation by Competition in a Smooth Fitness Landscape. Phys. Rev. Lett. 79, 3302–3305 (1997)

    Article  Google Scholar 

  2. Chopard, B., Droz, M.: Cellular Automata Modeling of Physical Systems. Cambridge University Press, Cambridge (1998)

    Book  MATH  Google Scholar 

  3. Coyne, J.A., Orr, H.A.: Speciation. Sinauer Associates, Sunderland (2004)

    Google Scholar 

  4. Culik, K., Hurd, L.P., Yu, S.: Computation theoretic aspects of cellular automata. Physica D 45, 357–378 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  5. Darwin, C.: On the Origin of Species by Means of Natural Selection, or The Preservation of Favoured Races in the Struggle for Life. John Murray, London (1859)

    Google Scholar 

  6. Dieckmann, U., Doebeli, M., Metz, J., Tautz, D. (eds.): Adaptive Speciation. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  7. Diehl, S.R., Bush, G.L.: The role of habitat preference in adaptation and speciation. In: Otte, D., Endler, J.A. (eds.) Speciation and its consequences, pp. 345–365. Sinauer Associates, Sunderland (1989)

    Google Scholar 

  8. El Yacoubi, S., El Jai, A.: Cellular automata and spreadability. Mathematical and Computational Modelling 36, 1059–1074 (2002)

    Article  MATH  Google Scholar 

  9. Ermentrout, G.B., Edelstein-Keshet, L.: Cellular automata approaches to biological modeling. Journal of Theoretical Biology 160, 97–133 (1993)

    Article  Google Scholar 

  10. Fry, J.D.: Multilocus models of sympatric speciation: Bush versus Rice versus Felsenstein. Evolution 57, 1735–1746 (2003)

    Google Scholar 

  11. Gavrilets, S.: Fitness Landscapes and the Origin of Species. Monographs in Population Biology, vol. 41. Princeton Uiversity Press, Princeton (2004)

    Google Scholar 

  12. Green, D.G.: Simulated effects of fire, dispersal and spatial pattern on competition within forest mosaics. Vegetation 82, 139–153 (1989)

    Article  Google Scholar 

  13. Kawecki, T.J.: Sympatric Speciation Driven by Beneficial Mutations. Proceedings Royal Society of London 265, 1515–1520 (1996)

    Article  Google Scholar 

  14. Kawecki, T.J.: Sympatric Speciation via Habitat Specialization Driven by Deleterious Mutations. Evolution 51, 1751–1763 (1997)

    Article  Google Scholar 

  15. Mange, D., Tomassini, M. (eds.): Bio-Inspired Computing Machines, Presses Polytechniques et Universitaires Romandes (1998)

    Google Scholar 

  16. Margolus, N.: Physics-like models of computation. Physica D 10, 81–95 (1984)

    Article  MathSciNet  Google Scholar 

  17. Maynard Smith, J.: Sympatric speciation. Am. Nat. 100, 637–650 (1966)

    Article  Google Scholar 

  18. Mayr, E.: Systems of ordering data. Biol. Phil. 10, 419–434 (1995)

    Article  Google Scholar 

  19. Murray, J.D.: Mathematical Biology, Biomathematics Texts. Springer, Heidelberg (1993)

    Google Scholar 

  20. Perrier, J.Y., Sipper, M., Zahnd, J.: Toward a viable, self-reproducing universal computer. Physica D 97, 335–352 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  21. Savolainen, V., Anstett, M.C., Lexer, C., Hutton, I., Clarkson, J.J., Norup, M.V., Powell, M.P., Springate, D., Salamin, N., Baker, W.J.: Sympatric speciation in palms on an oceanic island. Nature 441, 210–213 (2006)

    Article  Google Scholar 

  22. Sipper, M.: Non-Uniform Cellular Automata: Evolution in Rule Space and Formation of Complex Structures. In: Brooks, R.A., Maes, P. (eds.) Artificial Life IV, pp. 394–399. MIT Press, Cambridge (1994)

    Google Scholar 

  23. Toffoli, T.: Cellular automata as an alternative to (rather than an approximation of) differential equations in modeling physics. Physica D 10, 117–127 (1984)

    Article  MathSciNet  Google Scholar 

  24. Vichniac, G.: Simulating physics with cellular automata. Physica D 10, 96–115 (1984)

    Article  MathSciNet  Google Scholar 

  25. von Neumann, J.: Theory of Self-Reproducing Automata. University of Illinois Press, Illinois Edited and completed by A.W. Burks (1966)

    Google Scholar 

  26. Wolfram, S.: Cellular automata and complexity: collected papers. Addison-Wesley, Reading (1994)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

El Yacoubi, S., Gourbière, S. (2006). A Cellular Automata Model for Adaptive Sympatric Speciation. In: El Yacoubi, S., Chopard, B., Bandini, S. (eds) Cellular Automata. ACRI 2006. Lecture Notes in Computer Science, vol 4173. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11861201_34

Download citation

  • DOI: https://doi.org/10.1007/11861201_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40929-8

  • Online ISBN: 978-3-540-40932-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics