Skip to main content

Optimal Probing Patterns for Sequencing by Hybridization

  • Conference paper
Algorithms in Bioinformatics (WABI 2006)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 4175))

Included in the following conference series:

Abstract

Sequencing by Hybridization (SBH) is a method for reconstructing a DNA sequence based on its k-mer content. This content, called the spectrum of the sequence, can be obtained from hybridization with a universal DNA chip. The main shortcoming of SBH is that it reliably reconstructs only sequences of length at most square root of the size of the chip. Frieze et al. [9] showed that by using gapped probes, SBH can reconstruct sequences with length that is linear in the size of the chip. In this work we investigate the optimal placement of the gaps in the probes, and give an algorithm for finding nearly optimal gap placement. Using our algorithm, we obtain a chip design which is more efficient than the chip of Frieze et al.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adleman, L.M.: Location sensitive sequencing of DNA. Technical report, University of Southern California (1998)

    Google Scholar 

  2. Arratia, R., Martin, D., Reinert, G., Waterman, M.S.: Poisson process approximation for sequence repeats, and sequencing by hybridization. J. of Computational Biology 3(3), 425–463 (1996)

    Article  Google Scholar 

  3. Bains, W., Smith, G.C.: A novel method for nucleic acid sequence determination. J. Theor. Biology 135, 303–307 (1988)

    Article  Google Scholar 

  4. Ben-Dor, A., Pe’er, I., Shamir, R., Sharan, R.: On the complexity of positional sequencing by hybridization. J. Theor. Biology 8(4), 88–100 (2001)

    Google Scholar 

  5. Broude, S.D., Sano, T., Smith, C.S., Cantor, C.R.: Enhanced DNA sequencing by hybridization. Proc. Nat’l Acad. Sci. USA 91, 3072–3076 (1994)

    Article  Google Scholar 

  6. Buhler, J., Keich, U., Sun, Y.: Designing seeds for similarity search in genomic DNA. J. of Computer and System Sciences 70(3), 342–363 (2005)

    Article  MathSciNet  Google Scholar 

  7. Drmanac, R., Labat, I., Brukner, I., Crkvenjakov, R.: Sequencing of megabase plus DNA by hybridization: theory of the method. Genomics 4, 114–128 (1989)

    Article  Google Scholar 

  8. Dyer, M.E., Frieze, A.M., Suen, S.: The probability of unique solutions of sequencing by hybridization. J. of Computational Biology 1, 105–110 (1994)

    Article  Google Scholar 

  9. Frieze, A., Preparata, F.P., Upfal, E.: Optimal reconstruction of a sequence from its probes. J. of Computational Biology 6, 361–368 (1999)

    Article  Google Scholar 

  10. Frieze, A.M., Halldórsson, B.V.: Optimal sequencing by hybridization in rounds. J. of Computational Biology 9(2), 355–369 (2002)

    Article  Google Scholar 

  11. Hannenhalli, S., Pevzner, P.A., Lewis, H., Skiena, S.: Positional sequencing by hybridization. Computer Applications in the Biosciences 12, 19–24 (1996)

    Google Scholar 

  12. Heath, S.A., Preparata, F.P.: Enhanced sequence reconstruction with DNA microarray application. In: Wang, J. (ed.) COCOON 2001. LNCS, vol. 2108, pp. 64–74. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  13. Heath, S.A., Preparata, F.P., Young, J.: Sequencing by hybridization using direct and reverse cooperating spectra. J. of Computational Biology 10(3/4), 499–508 (2003)

    Article  Google Scholar 

  14. Keich, U., Li, M., Ma, B., Tromp, J.: On spaced seeds for similarity search. Discrete Applied Mathematics 138(3), 253–263 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  15. Kucherov, G., Noé, L., Roytberg, M.: A unifying framework for seed sensitivity and its application to subset seeds. In: Casadio, R., Myers, G. (eds.) WABI 2005. LNCS (LNBI), vol. 3692, pp. 251–263. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  16. Lysov, Y., Floretiev, V., Khorlyn, A., Khrapko, K., Shick, V., Mirzabekov, A.: DNA sequencing by hybridization with oligonucleotides. Dokl. Acad. Nauk USSR 303, 1508–1511 (1988)

    Google Scholar 

  17. Margaritis, D., Skiena, S.: Reconstructing strings from substrings in rounds. In: Proc. 36th Symp. on Foundations of Computer Science FOCS 1995, pp. 613–620 (1995)

    Google Scholar 

  18. Pe’er, I., Arbili, N., Shamir, R.: A computational method for resequencing long DNA targets by universal oligonucleotide arrays. Proc. Nat’l Acad. Sci. USA 99, 15497–15500 (2002)

    Article  Google Scholar 

  19. Pe’er, I., Shamir, R.: Spectrum alignment: Efficient resequencing by hybridization. In: Proc. 8th Conf. on Intelligent Systems in Molecular Biology ISMB 2000, pp. 260–268 (2000)

    Google Scholar 

  20. Pevzner, P.A., Lysov, Y.P., Khrapko, K.R., Belyavsky, A.V., Florentiev, V.L., Mirzabekov, A.D.: Improved chips for sequencing by hybridization. J. Biomolecular Structure and Dynamics 9, 399–410 (1991)

    Google Scholar 

  21. Preparata, F.P., Oliver, J.S.: DNA sequencing by hybridization using semi-degenerate bases. J. of Computational Biology 11(4), 753–765 (2004)

    Article  Google Scholar 

  22. Preparata, F.P., Upfal, E.: Sequencing by hybridization at the information theory bound: an optimal algorithm. J. of Computational Biology 7, 621–630 (2000)

    Article  Google Scholar 

  23. Shamir, R., Tsur, D.: Large scale sequencing by hybridization. J. of Computational Biology 9(2), 413–428 (2002)

    Article  Google Scholar 

  24. Skiena, S., Snir, S.: Restricting SBH ambiguity via restriction enzymes. In: Guigó, R., Gusfield, D. (eds.) WABI 2002. LNCS, vol. 2452, pp. 404–417. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  25. Skiena, S., Sundaram, G.: Reconstructing strings from substrings. J. of Computational Biology 2, 333–353 (1995)

    Article  Google Scholar 

  26. Snir, S., Yeger-Lotem, E., Chor, B., Yakhini, Z.: Using restriction enzymes to improve sequencing by hybridization. Technical Report CS-2002-14, Technion, Haifa, Israel (2002)

    Google Scholar 

  27. Tsur, D.: Bounds for resequencing by hybridization. In: Benson, G., Page, R.D.M. (eds.) WABI 2003. LNCS (LNBI), vol. 2812, pp. 498–511. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  28. Tsur, D.: Sequencing by hybridization in few rounds. In: Di Battista, G., Zwick, U. (eds.) ESA 2003. LNCS, vol. 2832, pp. 506–516. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tsur, D. (2006). Optimal Probing Patterns for Sequencing by Hybridization. In: Bücher, P., Moret, B.M.E. (eds) Algorithms in Bioinformatics. WABI 2006. Lecture Notes in Computer Science(), vol 4175. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11851561_34

Download citation

  • DOI: https://doi.org/10.1007/11851561_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-39583-6

  • Online ISBN: 978-3-540-39584-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics