Skip to main content

Flux-Based vs. Topology-Based Similarity of Metabolic Genes

  • Conference paper
Algorithms in Bioinformatics (WABI 2006)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 4175))

Included in the following conference series:

  • 864 Accesses

Abstract

We present an effectively computable measure of functional gene similarity that is based on metabolic gene activity across a variety of growth media. We applied this measure to 750 genes comprising the metabolic network of the budding yeast. Comparing the in silico computed functional similarities to those obtained by using experimental expression data, we show that our computational method captures similarities beyond those that are obtained by the topological analysis of metabolic networks, thus revealing—at least in part—dynamic characteristics of gene function. We also suggest that network centrality partially explains functional centrality (i.e. the number of functionally highly similar genes) by reporting a significant correlation between the two. Finally, we find that functional similarities between topologically distant genes occur between genes with different GO annotations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jeong, H., Tombor, B., Albert, R., Oltavi, Z., Barabasi, A.: The large-scale organization of metabolic networks. Nature 407, 651–654 (2000)

    Article  Google Scholar 

  2. Ravasz, E., Somera, A., Mongru, D., Oltvai, Z., Barabasi, A.: Hierarchical organization of modularity in metabolic networks. Science 297, 1551–1555 (2002)

    Article  Google Scholar 

  3. Kharchenko, P., Church, G.M., Vitkup, D.: Expression dynamics of a cellular metabolic network. Molecular Systems Biology 1, E1–E6 (2005)

    Article  Google Scholar 

  4. Chen, L., Vitkup, D.: Predicting genes for orphan metabolic activities using phylogenetic profiles. Genome Biol. 7, R17 (2006)

    Article  Google Scholar 

  5. Famili, I., Forster, J., Nielsen, J., Palsson, B.Ø.: Saccharomyces cerevisiae phenotypes can be predicted by using constraint-based analysis of a genome-scale reconstructed metabolic network. Proc. Natl. Acad. Sci. U S A 100, 13134–13139 (2003)

    Article  Google Scholar 

  6. Zaslaver, A., Mayo, A., Rosenberg, R., Bashkin, P., Sberro, H., et al.: Just-in-time transcription program in metabolic pathways. Nat. Genet. 36, 486–491 (2004)

    Article  Google Scholar 

  7. Schuster, S., Dandekar, T., Fell, D.: Detection of elementary flux modes in biochemical networks: a promising tool for pathway analysis and metabolic engineering. Trends Biotechnol. 17, 53–60 (1999)

    Article  Google Scholar 

  8. Schuster, S., Klamt, S., Weckwerth, W., Moldenhauer, F., Pfeiffer, T.: Use of network analysis of metabolic systems in bioengineering. Bioprocess and Biosystems Engineering 24, 363–372 (2002)

    Article  Google Scholar 

  9. Reed, J., Palsson, B.: Genome-scale in silico models of e. coli have multiple equivalent phenotypic states: assessment of correlated reaction subsets that comprise network states. Genome Res. 14, 1797–1805 (2004)

    Article  Google Scholar 

  10. Bilu, Y., Shlomi, T., Barkai, N., Ruppin, E.: Conservation of expression and sequence of metabolic genes is reflected by activity across metabolic states. PLoS Comp. Bio. (in press, 2006)

    Google Scholar 

  11. Fell, D., Small, J.: Fat synthesis in adipose tissue. An examination of stoichiometric constraints. Biochem. J. 238, 781–786 (1986)

    Google Scholar 

  12. Kauffman, K., Prakash, P., Edwards, J.: Advances in flux balance analysis.. Curr. Opin. Biotechnol. 14, 491–496 (2003)

    Article  Google Scholar 

  13. Price, N.D., Reed, J.L., Palsson, B.Ø.: Genome-scale Models of Microbial Cells: Evaluating the consequences of constraints. Nature Reviews Microbiology 2, 886–897 (2004)

    Article  Google Scholar 

  14. Varma, A., Palsson, B.: Metabolic capabilities of Escherichia coli: II. Optimal growth patterns. J. Theor. Biol. 165, 503–522 (1993)

    Article  Google Scholar 

  15. Schilling, C.H., Edwards, J.S., Palsson, B.: Toward metabolic phenomics: analysis of genomic data using flux balances. Biotechnol. Prog. 15, 288–295 (1999)

    Article  Google Scholar 

  16. Fell, D.: Understanding the Control of Metabolism. Portland Press, London (1996)

    Google Scholar 

  17. Schilling, C.H., Edwards, J.S., Letscher, D., Palsson, B.Ø.: Combining pathway analysis with flux balance analysis for the comprehensive study of metabolic systems. Biotechnol. Bioeng. 71, 286–306 (2000)

    Article  Google Scholar 

  18. Vanderbei, R.J.: Linear Programming: Foundations and Extensions. Kluwer Academic Publishers, Boston (1996)

    MATH  Google Scholar 

  19. Edwards, J., Ibarra, R., Palsson, B.: In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data. Nat. Biotechnol. 19, 125–130 (2001)

    Article  Google Scholar 

  20. Badarinarayana, V., Estep, P.W., Shendure, J., Edwards, J., Tavazoie, S., Lam, F., Church, G.M.: Selection analyses of insertional mutants using subgenic-resolution arrays. Nat. Biotechnol. 19, 1060–1065 (2001)

    Article  Google Scholar 

  21. Duarte, N., Herrgard, M., Palsson, B.Ø.: Reconstruction and validation of Saccharomyces cerevisiae iND750, a fully compartmentalized genome-scale metabolic model. Genome Res. 14, 1298–1309 (2004)

    Article  Google Scholar 

  22. Segre, D., Vitkup, D., Church, G.: Analysis of optimality in natural and perturbed metabolic networks. Proc. Natl. Acad. Sci. U S A 99, 15112–15117 (2002)

    Article  Google Scholar 

  23. Shlomi, T., Berkman, O., Ruppin, E.: Regulatory on/off minimization of metabolic flux changes after genetic perturbations. Proc. Natl. Acad. Sci. U S A 102, 7695–7700 (2005)

    Article  Google Scholar 

  24. Kuepfer, L., Sauer, U., Blank, L.M.: Metabolic functions of duplicate genes in Saccharomyces cerevisiae. Genome Res. 15, 1421–1430 (2005)

    Article  Google Scholar 

  25. Mahadevan, R., Schilling, C.: The effects of alternate optimal solutions in constraint-based genome-scale metabolic models. Metab. Eng. 5, 264–276 (2003)

    Article  Google Scholar 

  26. Almaas, E., Oltvai, Z., Barabasi, A.: The activity reaction core and plasticity of metabolic networks. PLoS Comput. Biol. 1, 68 (2005)

    Article  Google Scholar 

  27. Salton, G., McGill, M.J.: Introduction to Modern Information Retrieval. McGraw-Hill, New-York (1983)

    MATH  Google Scholar 

  28. Hughes, T., et al.: Flux analysis of underdetermined metabolic networks: the quest for the missing constraints. Cell 102, 109–126 (2000)

    Article  Google Scholar 

  29. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in C++: the art of scientific computing. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  30. Ashburner, M., et al.: Gene Ontology: tool for the unification of biology. Nat. Genet. 25, 25–29 (2000)

    Article  Google Scholar 

  31. Issel-Tarver, L., et al.: Saccharomyces Genome Database. Methods Enzymol 350, 329–346 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rokhlenko, O., Shlomi, T., Sharan, R., Ruppin, E., Pinter, R.Y. (2006). Flux-Based vs. Topology-Based Similarity of Metabolic Genes. In: Bücher, P., Moret, B.M.E. (eds) Algorithms in Bioinformatics. WABI 2006. Lecture Notes in Computer Science(), vol 4175. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11851561_26

Download citation

  • DOI: https://doi.org/10.1007/11851561_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-39583-6

  • Online ISBN: 978-3-540-39584-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics