Skip to main content

Rapid ab initio RNA Folding Including Pseudoknots Via Graph Tree Decomposition

  • Conference paper
Algorithms in Bioinformatics (WABI 2006)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 4175))

Included in the following conference series:

Abstract

The prediction of RNA secondary structure including pseudoknots remains a challenge due to the intractable computation of the sequence conformation from intriguing nucleotide interactions. Optimal algorithms often assume a restricted class for the predicted RNA structures and yet still require a high-degree polynomial time complexity, which is too expensive to use. Heuristic methods may yield time-efficient algorithms but they do not guarantee optimality of the predicted structure. This paper introduces a new and efficient algorithm for the prediction of RNA structure with pseudoknots for which the structure is not restricted. Novel prediction techniques are developed based on graph tree decomposition. In particular, stem overlapping relationships are defined with a graph, in which a specialized maximum independent set (IS) corresponds to the desired optimal structure. Such a graph is tree decomposable; dynamic programming over a tree decomposition of the graph leads to an efficient algorithm. The new algorithm is evaluated on a large number of RNA sequence sets taken from diverse resources. It demonstrates overall sensitivity and specificity that outperforms or is comparable with those of previous optimal and heuristic algorithms yet it requires significantly less time than other optimal algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abrahams, J., van den Berg, M., van Batenburg, E., Pleij, C.: Prediction of RNA secondary structure, including pseudoknotting, by computer simulation. Nucleic Acids Res. 18, 3035–3044 (1990)

    Article  Google Scholar 

  2. Bodlaender, H.L.: Classes of graphs with bounded tree-width. Tech. Rep. RUU-CS-86-22, Dept. of Computer Science, Utrecht University, the Netherlands (1986)

    Google Scholar 

  3. Bodlaender, H.L.: Dynamic programming algorithms on graphs with bounded tree-width. In: Lepistö, T., Salomaa, A. (eds.) ICALP 1988. LNCS, vol. 317, pp. 105–119. Springer, Heidelberg (1988)

    Google Scholar 

  4. Brown, J.: The ribonuclease p database. Nucleic Acids Res. 27, 314 (1999)

    Article  Google Scholar 

  5. Chen, J.-H., Le, S.-Y., Maize, J.V.: Prediction of common secondary structures of RNAs: a genetic algorithm approach. Nucleic Acids Research 28(4), 991–999 (2000)

    Article  Google Scholar 

  6. Dirks, R., Pierce, N.: A partition function algorithm for nucleic acid secondary structure including pseudoknots. J. Comput. Chem. 24, 1664–1677 (2003)

    Article  Google Scholar 

  7. Durbin, R., Eddy, S.R., Krogh, A., Mitchison, G.J.: Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids. Cambridge University Press, Cambridge (1998)

    Book  MATH  Google Scholar 

  8. Eddy, S.R., Durbin, R.: RNA sequence analysis using covariance models. Nucleic Acids Research 22, 2079–2088 (1994)

    Article  Google Scholar 

  9. Giedroc, D., Theimer, C., Nixon, P.: Structure, stability and function of RNA pseudoknots involved in stimulating ribosomal frame shifting. J. of Molecular Biology 298, 167–185 (2000)

    Article  Google Scholar 

  10. Hicks, I.V., Koster, A.M.C.A., Kolotoglu, E.: Branch and tree decomposition techniques for discrete optimization. In: Tutorials in Operations Research: INFORMS – New Orleans 2005 (2005)

    Google Scholar 

  11. Ji, Y., Xu, X., Stormo, G.D.: A graph theoretical approach for predicting common RNA secondary structure motifs including pseudoknots in unaligned sequences. Bioinformatics 20(10), 1591–1602 (2004)

    Article  Google Scholar 

  12. Ke, A., Zhou, K., Ding, F., Cate, J.H., Doudna, J.A.: A conformational switch controls hepatitis delta virus ribozyme catalysis. Nature 429, 201–205 (2004)

    Article  Google Scholar 

  13. Lyngso, R.B., Pedersen, C.N.S.: RNA pseudoknot prediction in energy-based models. J. of Computational Biology 7(3-4), 409–427 (2000)

    Article  Google Scholar 

  14. Mathews, D.H., Sabina, J., Zuker, M., Pederson, C.N.S.: Expanded sequence dependence of the thermodynamic parameters improves prediction of RNA secondary structure. J. Mol. Biol. 288, 911–940 (1999)

    Article  Google Scholar 

  15. Nussinov, R., Pieczenik, G., Griggs, J., Kleitman, D.: Algorithms for loop matchings. SIAM J. Applied Mathematics 35, 68–82 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  16. Ren, J., Rastegart, B., Condon, A., Hoos, H.H.: HotKnots: Heuristic prediction of RNA secondary structures including pseudoknots. RNA 11, 1194–1504 (2005)

    Article  Google Scholar 

  17. Rivas, E., Eddy, S.R.: A dynamic programming algorithm for RNA structure prediction including pseudoknots. J. Molecular Biology 285, 2053–2068 (1999)

    Article  Google Scholar 

  18. Robertson, N., Seymour, P.D.: Graph minors ii. algorithmic aspects of tree width. J. Algorithms 7, 309–322 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  19. Ruan, J., Stormo, G.D., Zhang, W.: An iterated loop matching approach to the prediction of RNA secondary structures with pseudoknots. Bioinformatics 20(1), 58–66 (2004)

    Article  Google Scholar 

  20. Serra, M.J., Turner, D.H., Freier, S.M.: Predicting thermodynamic properties of RNA. Meth. Enzymol. 259, 243–261 (1995)

    Google Scholar 

  21. Song, Y., Liu, C., Malmberg, R.L., Pan, F., Cai, L.: Tree decomposition based fast search of RNA structures including pseudoknots in genomes. In: Proc. Comput. System Bioinformatics Conf. CSB 2005, pp. 223–234. IEEE Computer Society, Los Alamitos (2005)

    Google Scholar 

  22. Sprinzl, M., Horn, C., Brown, M., Ioudovitch, A., Steinberg, S.: Compilation of tRNA sequences and sequences of tRNA genes. Nucleic Acids Res. 26, 148–153 (1998)

    Article  Google Scholar 

  23. Tabaska, J., Cary, R., Gabow, H., Stormo, G.: An RNA folding method capable of identifying pseudoknots and base triples. Bioinformatics 14(8), 691–699 (1998)

    Article  Google Scholar 

  24. van Batenburg, F., Gultyaev, A., Pleij, C., Ng, J., Oliehoek, J.: Pseudobase: a database with RNA pseudoknots. Nucleic Acids Res. 28, 201–204 (2000)

    Article  Google Scholar 

  25. Zuker, M., Stiegler, P.: Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Res. 9(1), 133–148 (1981)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhao, J., Malmberg, R.L., Cai, L. (2006). Rapid ab initio RNA Folding Including Pseudoknots Via Graph Tree Decomposition. In: Bücher, P., Moret, B.M.E. (eds) Algorithms in Bioinformatics. WABI 2006. Lecture Notes in Computer Science(), vol 4175. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11851561_25

Download citation

  • DOI: https://doi.org/10.1007/11851561_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-39583-6

  • Online ISBN: 978-3-540-39584-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics