Skip to main content

Landscape Analysis for Protein-Folding Simulation in the H-P Model

  • Conference paper
Algorithms in Bioinformatics (WABI 2006)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 4175))

Included in the following conference series:

Abstract

The hydrophobic-hydrophilic (H-P) model for protein folding was introduced by Dill et al.[7]. A problem instance consists of a sequence of amino acids, each labeled as either hydrophobic (H) or hydrophilic (P). The sequence must be placed on a 2D or 3D grid without overlapping, so that adjacent amino acids in the sequence remain adjacent in the grid. The goal is to minimize the energy, which in the simplest variation corresponds to maximizing the number of adjacent hydrophobic pairs. The protein folding problem in the H-P model is NP-hard in both 2D and 3D. Recently, Fu and Wang [10] proved an exp(O(n 1 − − 1/d)ln n) algorithm for d-dimensional protein folding simulation in the HP-model. Our preliminary results on stochastic search applied to protein folding utilize complete move sets proposed by Lesh et al.[15] and Blazewicz et al.[4]. We obtain that after (m/δ)O( Γ) Markov chain transitions, the probability to be in a minimum energy conformation is at least 1–δ, where m is the maximum neighbourhood size and Γ is the maximum value of the minimum escape height from local minima of the underlying energy landscape. We note that the time bound depends on the specific instance. Based on [10] we conjecture Γ≤n 1 − − 1/d. We analyse \(\Gamma \leq \sqrt{n}\) experimentally on selected benchmark problems [15,21] for the 2D case.

Research partially supported by EPSRC Grant No. EP/D062012/1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albrecht, A.A.: A stopping criterion for logarithmic simulated annealing. Computing (in press, 2006)

    Google Scholar 

  2. Anfinsen, C.B.: Principles that govern the folding of protein chains. Science 181, 223–230 (1973)

    Article  Google Scholar 

  3. Berger, B., Leighton, T.: Protein folding in the hydrophobic-hydrophilic (HP) model is NP-complete. J. Comput. Biol. 5, 27–40 (1998)

    Article  Google Scholar 

  4. Blazewicz, J., Lukasiak, P., Milostan, M.: Application of tabu search strategy for finding low energy structure of protein. Artif. Intell. Med. 35, 135–145 (2005)

    Article  Google Scholar 

  5. Catoni, O.: Rough large deviation estimates for simulated annealing: applications to exponential schedules. Ann. Probab. 20, 1109–1146 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  6. Černy, V.: A thermodynamical approach to the travelling salesman problem: an efficient simulation algorithm. J. Optim. Theory Appl. 45, 41–51 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  7. Dill, K.A., Bromberg, S., Yue, K., Fiebig, K.M., Yee, D.P., Thomas, P.D., Chan, H.S.: Principles of protein folding – A perspective from simple exact models. Protein Sci. 4, 561–602 (1995)

    Article  Google Scholar 

  8. Eastwood, M.P., Hardin, C., Luthey-Schulten, Z., Wolynes, P.G.: Evaluating protein structure-prediction schemes using energy landscape theory. IBM J. Res. Dev. 45, 475–497 (2001)

    Article  Google Scholar 

  9. Finkelstein, A.V., Badretdinov, A.Y.: Rate of protein folding near the point of thermodynamic equilibrium between the coil and the most stable chain fold. Folding & Design 2, 115–121 (1997)

    Article  Google Scholar 

  10. Fu, B., Wang, W.: A \(2^{O(n^{1-1/d}\cdot \log{n})}\) time algorithm for d-dimensional protein folding in the HP-model. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 630–644. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  11. Greenberg, H.J., Hart, W.E., Lancia, G.: Opportunities for combinatorial optimization in computational biology. INFORMS J. Comput. 16, 211–231 (2004)

    Article  MathSciNet  Google Scholar 

  12. Hajek, B.: Cooling schedules for optimal annealing. Mathem. Oper. Res. 13, 311–329 (1988)

    MATH  MathSciNet  Google Scholar 

  13. Heun, V.: Approximate protein folding in the HP side chain model on extended cubic lattices. Discrete Appl. Math. 127, 163–177 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  14. Kirkpatrick, S., Gelatt Jr., C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220, 671–680 (1983)

    Article  MathSciNet  Google Scholar 

  15. Lesh, N., Mitzenmacher, M., Whitesides, S.: A complete and effective move set for simplified protein folding. In: Proc. RECOMB 2003, pp. 188–195 (2003)

    Google Scholar 

  16. Nayak, A., Sinclair, A., Zwick, U.: Spatial codes and the hardness of string folding problems. J. Comput. Biol. 6, 13–36 (1999)

    Article  Google Scholar 

  17. Neumaier, A.: Molecular modeling of proteins and mathematical prediction of protein structure. SIAM Rev. 39, 407–460 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  18. Ngo, J.M., Marks, J., Karplus, M.: Computational complexity, protein structure prediction, and the Levinthal paradox. In: Merz Jr., K., LeGrand, S. (eds.) The Protein Folding Problem and Tertiary Structure Prediction, pp. 433–506. Birkhäuser, Boston (1994)

    Google Scholar 

  19. Pardalos, P.M., Liu, X., Xue, G.: Protein conformation of a lattice model using tabu search. J. Global Optim. 11, 55–68 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  20. Straub, J.E.: Protein folding and optimization algorithms. In: The Encyclopedia of Computational Chemistry, vol. 3, pp. 2184–2191. Wiley & Sons, Chichester (1998)

    Google Scholar 

  21. Unger, R., Moult, J.: Genetic algorithms for protein folding simulations. J. Mol. Biol. 231, 75–81 (1993)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Steinhöfel, K., Skaliotis, A., Albrecht, A.A. (2006). Landscape Analysis for Protein-Folding Simulation in the H-P Model. In: Bücher, P., Moret, B.M.E. (eds) Algorithms in Bioinformatics. WABI 2006. Lecture Notes in Computer Science(), vol 4175. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11851561_24

Download citation

  • DOI: https://doi.org/10.1007/11851561_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-39583-6

  • Online ISBN: 978-3-540-39584-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics