Skip to main content

Decomposing Metabolomic Isotope Patterns

  • Conference paper
Algorithms in Bioinformatics (WABI 2006)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 4175))

Included in the following conference series:

Abstract

We present a method for determining the sum formula of metabolites solely from their mass and isotope pattern. Metabolites, such as sugars or lipids, participate in almost all cellular processes, but the majority still remains uncharacterized. Our input is a measured isotope pattern from a high resolution mass spectrometer, and we want to find those molecules that best match this pattern.

Determination of the sum formula is a crucial step in the identification of an unknown metabolite, as it reduces its possible structures to a hopefully manageable set. Our method is computationally efficient, and first results on experimental data indicate good identification rates for chemical compounds up to 700 Dalton.

Above 1000 Dalton, the number of molecules with a certain mass increases rapidly. To efficiently analyze mass spectra of such molecules, we define several additive invariants extracted from the input and then propose to solve a joint decomposition problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Audi, G., Wapstra, A., Thibault, C.: The AME2003 atomic mass evaluation (ii): Tables, graphs, and references. Nucl. Phys. A 729, 129–336 (2003)

    Article  Google Scholar 

  2. Böcker, S., Lipták, Z.: Efficient mass decomposition. In: Proc. of ACM Symposium on Applied Computing (ACM SAC 2005), pp. 151–157 (2006)

    Google Scholar 

  3. Fürst, A., Clerc, J.-T., Pretsch, E.: A computer program for the computation of the molecular formula. Chemom. Intell. Lab. Syst. 5, 329–334 (1989)

    Article  Google Scholar 

  4. Grange, A.H., Zumwalt, M.C., Sovocool, G.W.: Determination of ion and neutral loss compositions and deconvolution of product ion mass spectra using an orthogonal acceleration time-of-flight mass spectrometer and an ion correlation program. Rapid Commun. Mass Spectrom. 20(2), 89–102 (2006)

    Article  Google Scholar 

  5. Hsu, C.S.: Diophantine approach to isotopic abundance calculations. Anal. Chem. 56(8), 1356–1361 (1984)

    Article  Google Scholar 

  6. Kanehisa, M., Goto, S., Hattori, M., Aoki-Kinoshita, K.F., Itoh, M., Kawashima, S., Katayama, T., Araki, M., Hirakawa, M.: From genomics to chemical genomics: new developments in KEGG. Nuc. Acid Res. 34, D354–D357 (2006)

    Article  Google Scholar 

  7. Kellerer, H., Pferschy, U., Pisinger, D.: Knapsack Problems. Springer, Heidelberg (2004)

    MATH  Google Scholar 

  8. Kubinyi, H.: Calculation of isotope distributions in mass spectrometry: A trivial solution for a non-trivial problem. Anal. Chim. Acta. 247, 107–119 (1991)

    Article  Google Scholar 

  9. McLafferty, F.W.: Wiley Registry of Mass Spectral Data, 7th edn. with NIST 2005 spectral data edition. John Wiley & Sons, Chichester (2005)

    Google Scholar 

  10. Ojanperä, S., Pelander, A., Pelzing, M., Krebs, I., Vuori, E., Ojanperä, I.: Isotopic pattern and accurate mass determination in urine drug screening by liquid chromatography/time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom 20(7), 1161–1167 (2006)

    Article  Google Scholar 

  11. Pellegrin, V.: Molecular formulas of organic compounds: the nitrogen rule and degree of unsaturation. J. Chem. Educ. 60(8), 626–633 (1983)

    Article  Google Scholar 

  12. Rockwood, A.L., Van Orman, J.R., Dearden, D.V.: Isotopic compositions and accurate masses of single isotopic peaks. J. Am. Soc. Mass Spectr. 15, 12–21 (2004)

    Article  Google Scholar 

  13. Wilf, H.: Generating Functionology. Academic Press, London (1990)

    MATH  Google Scholar 

  14. Yergey, J.A.: A general approach to calculating isotopic distributions for mass spectrometry. Int. J. Mass Spectrom. Ion Phys. 52(2-3), 337–349 (1983)

    Article  Google Scholar 

  15. Zhang, N., Aebersold, R., Schwikowski, B.: ProbID: a probabilistic algorithm to identify peptides through sequence database searching using tandem mass spectral data. Proteomics 2(10), 1406–1412 (2002)

    Article  Google Scholar 

  16. Zhang, W., Chait, B.T.: ProFound: an expert system for protein identification using mass spectrometric peptide mapping information. Anal. Chem. 72(11), 2482–2489 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Böcker, S., Letzel, M.C., Lipták, Z., Pervukhin, A. (2006). Decomposing Metabolomic Isotope Patterns. In: Bücher, P., Moret, B.M.E. (eds) Algorithms in Bioinformatics. WABI 2006. Lecture Notes in Computer Science(), vol 4175. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11851561_2

Download citation

  • DOI: https://doi.org/10.1007/11851561_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-39583-6

  • Online ISBN: 978-3-540-39584-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics