Skip to main content

Cluster Design in the Earth Sciences Tethys

  • Conference paper
High Performance Computing and Communications (HPCC 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4208))

Abstract

Computational modeling is a powerful tool in the Earth Sciences. In the solid Earth important simulation areas include seismic wave propagation, rupture and fault dynamics in the lithosphere, creep in the mantle, and magneto-hydrodynamic flow linked to magnetic field generation in the core. These problems rank among the most demanding calculations computational physicists can perform today. They exceed the limitations of the largest high-performance computing systems by a factor of ten to one hundred measured both in terms of the demands on capacity and capability of systems. Off-the-shelf high-performance Linux clusters are useful to ease the limitations in capacity computing by exploiting price advantages in mass produced PC hardware. Here we review our experience of building a 128 processor AMD Opteron Gigabit Ethernet Linux cluster. The machine is operated at the scientific department level, targeted directly at large-scale geophysical and tectonic modeling and is funded by the German Ministry of Education and Science and the Free State of Bavaria. We observe an aggregate system performance of 140 GFLOPs out of a theoretical 624 GFLOPs peak.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bunge, H.-P., Richards, M.A., Lithgow-Bertelloni, C., Baumgardner, J.R., Grand, S., Romanowicz, B.: Time scales and heterogeneous structure in geodynamic earth models. Science 280, 91–95 (1998)

    Article  Google Scholar 

  2. Jarvis, G.T., McKenzie, D.P.: Convection in a compressible fluid with infinite prandtl number. Journal of Fluid Mechanics 96, 515–583 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  3. Glatzmaier, G.A.: Numerical simulations of mantle convection: Time-dependent, three-dimensional, compressible, spherical shell. Geophysical and Astrophysical Fluid Dynamics 43, 223–264 (1988)

    Article  MATH  Google Scholar 

  4. Tackley, P.J., Stevenson, D.J., Glatzmaier, G.A., Schubert, G.: Effects of an endothermic phase transition at 670 km depth on a spherical model of convection in Earth’s mantle. Nature 361, 699–704 (1993)

    Article  Google Scholar 

  5. Bunge, H.-P., Richards, M.A., Baumgardner, J.R.: Effect of depth dependent viscosity on the planform of mantle convection. Nature 379, 436–438 (1996)

    Article  Google Scholar 

  6. Zhong, S., Zuber, M.T., Moresi, L., Gurnis, M.: Role of temperature-dependent viscosity and surface plates in spherical shell models of mantle convection. Journal of Geophysical Research 105, 11063–11082 (2000)

    Article  Google Scholar 

  7. Glatzmaier, G.A., Roberts, P.H.: A three-dimensional, self-consistent computer simulation of a geomagnetic field reversal. Nature 377, 203–209 (1995)

    Article  Google Scholar 

  8. Kuang, W.L., Bloxham, J.: An earth-like numerical dynamo model. Nature 389, 371–374 (1997)

    Article  Google Scholar 

  9. Igel, H., Weber, M.: SH-wave propagation in the whole mantle using high-order finite differences. Geophysical Research Letters 22, 731–734 (1995)

    Article  Google Scholar 

  10. Komatitsch, D., Tromp, J.: Introduction to the spectral element method for three-dimensional seismic wave propagation. Geophysical Journal International 139, 806–822 (1999)

    Article  Google Scholar 

  11. Bunge, H.-P., Richards, M.A., Baumgardner, J.R.: Mantle circulation models with sequential data-assimilation: Inferring present-day mantle structure from plate motion histories. Philosophical Transactions of the Royal Society of London: Series A 360, 2545–2567 (2002)

    Article  Google Scholar 

  12. McNamara, A.K., Zhong, S.: Thermochemical structures beneath Africa and the Pacific Ocean. Nature 437, 1136 (2005)

    Article  Google Scholar 

  13. Courtier, P., Talagrand, O.: Variational assimilation of meterological observations with the adjoint vorticity equation I: Numerical results. Quarterly Journal of the Royal Meteorological Society 113, 1329–1347 (1987)

    Article  Google Scholar 

  14. Wunsch, C.: The Ocean Circulation Inverse Problem. Cambridge University Press, Cambridge (1996)

    Book  Google Scholar 

  15. Bunge, H.-P., Hagelberg, C.R., Travis, B.J.: Mantle circulation models with variational data-assimilation: Inferring past mantle flow and structure from plate motion histories and seismic tomography. Geophysical Journal International 152, 280–301 (2003)

    Article  Google Scholar 

  16. Landau, L., Lifschitz, E.: Fluid mechanics. Pergamon Press, Oxford (1987)

    MATH  Google Scholar 

  17. Baumgardner, J.R.: Three-Dimensional Treatment of Convective Flow in the Earth’s Mantle. Journal of Statistical Physics 39, 501–511 (1985)

    Article  Google Scholar 

  18. Williamson, D.: Integration of the barotropic vorticity equations on a spherical geodesic grid. Tellus 20, 642–653 (1968)

    Article  Google Scholar 

  19. Baumgardner, J.R., Frederickson, P.O.: Icosahedral discretization of the two-sphere. SIAM Journal on Numerical Analysis 22, 1107–1115 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  20. Benzi, M., Golub, G., Liesen, J.: Numerical solution of saddle point problems. Acta Numerica 14, 1–137 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  21. Verfürth, R.: A Combined Conjugate Gradient-Multigrid Algorithm for the Numerical Solution of the Stokes Problem. IMA Journal of Numerical Analysis 4, 441–455 (1984)

    MATH  MathSciNet  Google Scholar 

  22. Yang, W.-S., Baumgardner, J.R.: A matrix-dependent transfer multigrid method for strongly variable viscosity infinite Prandtl number thermal convection. Geophysical and Astrophysical Fluid Dynamics 92, 151–195 (2000)

    Article  MathSciNet  Google Scholar 

  23. Trottenberg, U., Oosterlee, C., Schüller, A.: Multigrid. Academic Press, London (2001)

    MATH  Google Scholar 

  24. Hülsemann, F., Kowarschik, M., Mohr, M., Rüde, U.: Parallel Geometric Multigrid. In: Bruaset, A.M., Tveito, A. (eds.) Numerical Solution of Partial Differential Equations on Parallel Computers. Lecture Notes in Computational Science and Engineering, vol. 51. Springer, Heidelberg (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Oeser, J., Bunge, HP., Mohr, M. (2006). Cluster Design in the Earth Sciences Tethys. In: Gerndt, M., Kranzlmüller, D. (eds) High Performance Computing and Communications. HPCC 2006. Lecture Notes in Computer Science, vol 4208. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11847366_4

Download citation

  • DOI: https://doi.org/10.1007/11847366_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-39368-9

  • Online ISBN: 978-3-540-39372-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics