Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4148))

Abstract

We present a novel technique to accurately describe the leakage power in CMOS nanometer Integrated Circuits (ICs) considering process variations. The model predicts a leakage power increment due to process variations with high accuracy. It is shown that leakage increases considerably as channel length variations become larger due to technology scaling. The present work also describes accurately the dependence of leakage dispersion with process variations. The model developed shows that, even if channel length variations are kept small the leakage dispersion is considerably large. Finally, the concept of “Hot Gates” (HGs) is introduced, showing that HGs will be an important reliability factor in near future nanometer technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jao, J., Narendra, S., Chandrakasan, A.: Subthreshold Leakage Modeling and Reduction Techniques. In: Proc. International Conference on Computer-Aided Design (ICCAD 2002) (2002)

    Google Scholar 

  2. Narendra, S., De, V., Borkar, S., Antoniadis, D., Chandrakasan, A.: Full-Chip subthresh-old leakage power prediction and reduction techniques for sub-0.18mm CMOS. IEEE J. of Solid-State Circuits 39(2), 501–510 (2004)

    Article  Google Scholar 

  3. Zhang, S., Wason, V., Banerjee, K.: A probabilistic framework to estimate full-chip sub-threshold leakage power distribution considering within-die and die-to-die P-T-V variations. In: Proc. ISLPED 2004, Newport Beach, CA, USA, August 2004, pp. 156–161 (2004)

    Google Scholar 

  4. Rosselló, J.L., Bota, S., Segura, J.C.: Compact Static Power Model of Complex CMOS Gates. In: Paliouras, V., Vounckx, J., Verkest, D. (eds.) PATMOS 2005. LNCS, vol. 3728, pp. 348–354. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  5. Srivastava, A., Bai, R., Blaauw, D., Sylvester, D.: Modeling and analysis of leakage power considering within-die process variations. In: Proc. ISLPED 2002, Monterey, CA, USA, August 2002, pp. 64–67 (2002)

    Google Scholar 

  6. Stolk, P., Widdershoven, F.P., Klaasen, D.B.M.: Modeling statistical dopant fluctuations in MOS transistors. IEEE T. on Electron Dev. 45(9), 1960–1971 (1998)

    Article  Google Scholar 

  7. Rossello, J.L., Bota, S., Rosales, M., Keshavarzi, A., Segura, J.: Thermal-aware design rules for nanometer ICs. In: Proc. THERMINIC 2005, Belgirate, Italy (September 2005)

    Google Scholar 

  8. Bota, S., Rosales, M., Rosselló, J.L., Keshavarzi, A., Segura, J.: Within die thermal gradient impact on clock skew: a new type of delay-fault mechanism. In: Proc. ITC 2004, Charlotte, USA (October 2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rosselló, J.L., de Benito, C., Bota, S., Segura, J. (2006). Leakage Power Characterization Considering Process Variations. In: Vounckx, J., Azemard, N., Maurine, P. (eds) Integrated Circuit and System Design. Power and Timing Modeling, Optimization and Simulation. PATMOS 2006. Lecture Notes in Computer Science, vol 4148. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11847083_7

Download citation

  • DOI: https://doi.org/10.1007/11847083_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-39094-7

  • Online ISBN: 978-3-540-39097-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics