Workshop on Petri Nets and Graph Transformations

  • Paolo Baldan
  • Hartmut Ehrig
  • Julia Padberg
  • Grzegorz Rozenberg
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4178)


The Workshop on Petri Nets and Graph Transformations, which is currently at its second edition, is focussed on the mutual relationship between two prominent specification formalisms for concurrency and distribution, namely Petri nets and graph transformation systems. It belongs to the folklore that Petri nets can be seen as rewriting systems over (multi)sets, the rewriting rules being the transitions, and, as such, they can be seen as special graph transformation systems, acting over labelled discrete graphs. The basic notions of Petri nets like marking, enabling, firing, steps and step sequences can be naturally “translated” to corresponding notions of graph transformation systems. Due to this close correspondence there has been a mutual influence between the two fields, which has lead to a fruitful cross-fertilisation.


Graph Transformation Graph Grammar Electronic Note Graph Transformation System Graph Transfor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Badouel, E., Llorens, M., Oliver, J.: Modeling concurrent systems: Reconfigurable nets. In: Arabnia, H.R., Mun, Y. (eds.) Proceedings of PDPTA 2003, vol. 4, pp. 1568–1574. CSREA Press (2003)Google Scholar
  2. 2.
    Baldan, P.: Modelling concurrent computations: from contextual Petri nets to graph grammars. PhD thesis, Department of Computer Science, University of Pisa, Available as technical report n. TD-1/00 (2000)Google Scholar
  3. 3.
    Baldan, P., Corradini, A., Ehrig, H., Löwe, M., Montanari, U., Rossi, F.: Concurrent Semantics of Algebraic Graph Transformation Systems. In: Ehrig, et al. (eds.) [10]Google Scholar
  4. 4.
    Baldan, P., Corradini, A., König, B.: A static analysis technique for graph transformation systems. In: Larsen, K.G., Nielsen, M. (eds.) CONCUR 2001. LNCS, vol. 2154, pp. 381–395. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  5. 5.
    Bardohl, R., Ermel, C.: Scenario animation for visual behavior models: A generic approach. Software and System Modeling 3(2), 164–177 (2004)CrossRefGoogle Scholar
  6. 6.
    Dottí, F.L., Foss, L., Ribeiro, L., Marchi Santos, O.: Verification of distributed object-based systems. In: Najm, E., Nestmann, U., Stevens, P. (eds.) FMOODS 2003. LNCS, vol. 2884, pp. 261–275. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. 7.
    Ehrig, H., Gajewsky, M., Parisi-Presicce, F.: Replacement systems with applications to algebraic specifications and petri nets. In: Ehrig, et al. (eds.) [10]Google Scholar
  8. 8.
    Ehrig, H., Habel, A., Kreowski, H.-J., Parisi-Presicce, F.: Parallelism and concurrency in High-Level Replacement Systems. Mathematical Structures in Computer Science 1, 361–404 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Ehrig, H., Habel, A., Padberg, J., Prange, U.: Adhesive high-level replacement categories and systems. In: Ehrig, H., Engels, G., Parisi-Presicce, F., Rozenberg, G. (eds.) ICGT 2004. LNCS, vol. 3256, pp. 144–160. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  10. 10.
    Ehrig, H., Kreowski, J., Montanari, U., Rozenberg, G. (eds.): Handbook of Graph Grammars and Computing by Graph Transformation. Concurrency, Parallelism and Distribution, vol. III. World Scientific, Singapore (1999)Google Scholar
  11. 11.
    Ermel, C., Ehrig, K.: View transformation in visual environments applied to petri nets. In: Ehrig, H., Padberg, J., Rozenberg, G. (eds.) Proceedings of PNGT 2004. Electronic Notes in Theoretical Computer Science, vol. 127, pp. 61–86. Elsevier, Amsterdam (2005)Google Scholar
  12. 12.
    Janssens, D.: ESM systems and the composition of their computations. In: Ehrig, H., Schneider, H.-J. (eds.) Dagstuhl Seminar 1993. LNCS, vol. 776, pp. 203–217. Springer, Heidelberg (1994)Google Scholar
  13. 13.
    Lack, S., Sobociński, P.: Adhesive categories. In: Walukiewicz, I. (ed.) FOSSACS 2004. LNCS, vol. 2987, pp. 273–288. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  14. 14.
    Meseguer, J., Montanari, U., Sassone, V.: On the semantics of Place/Transition Petri nets. Mathematical Structures in Computer Science 7, 359–397 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Milner, R.: Bigraphs for petri nets. In: Desel, J., Reisig, W., Rozenberg, G. (eds.) Lectures on Concurrency and Petri Nets. LNCS, vol. 3098, pp. 686–701. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  16. 16.
    Padberg, J., Ehrig, H., Ribeiro, L.: High level replacement systems applied to algebraic high level net transformation systems. Mathematical Structures in Computer Science 5(2), 217–256 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Padberg, J., Enders, B.: Rule invariants in graph transformation systems for analyzing safety-critical systems. In: Corradini, A., Ehrig, H., Kreowski, H.-J., Rozenberg, G. (eds.) ICGT 2002. LNCS, vol. 2505, pp. 334–350. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  18. 18.
    Rensink, A.: Towards model checking graph grammars. In: Leuschel, M., Gruner, S., Lo Presti, S. (eds.) Proceedings of the 3rd Workshop on Automated Verification of Critical Systems. Technical Report DSSE–TR–2003–2, pp. 150–160. University of Southampton (2003)Google Scholar
  19. 19.
    Sassone, V., Sobocinski, P.: A congruence for Petri nets. In: Proceedings of PNGT 2004. Electronic Notes in Theoretical Computer Science, vol. 127, pp. 107–120. Elsevier Science, Amsterdam (2005)Google Scholar
  20. 20.
    Varró, D.: Towards symbolic analysis of visual modelling languages. In: Bottoni, P., Minas, M. (eds.) Proc. GT-VMT 2002: International Workshop on Graph Transformation and Visual Modelling Techniques. Electronic Notes in Theoretical Computer Science, vol. 72, pp. 57–70. Elsevier, Amsterdam (2002)Google Scholar
  21. 21.
    Winskel, G.: Event Structures. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.) APN 1986. LNCS, vol. 255, pp. 325–392. Springer, Heidelberg (1987)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Paolo Baldan
    • 1
  • Hartmut Ehrig
    • 2
  • Julia Padberg
    • 2
  • Grzegorz Rozenberg
    • 3
  1. 1.Dipartimento di InformaticaUniversità Ca’ Foscari di VeneziaItaly
  2. 2.Institute for Software Technology and Theoretical Computer ScienceTechnical University BerlinGermany
  3. 3.Leiden Institute of Advanced Computer ScienceUniversiteit LeidenThe Netherlands

Personalised recommendations