Termination Analysis of Model Transformations by Petri Nets

  • Dániel Varró
  • Szilvia Varró–Gyapay
  • Hartmut Ehrig
  • Ulrike Prange
  • Gabriele Taentzer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4178)


Despite the increasing relevance of model transformation techniques in model-driven software development, research is mainly conducted to the specification and the automation of such transformations. However, since the transformations themselves may also contain conceptual flaws, it is essential to formally analyze them prior to executing them on user models. In the current paper, we focus on a central validation problem of trusted model transformations, namely, termination and propose a Petri net based analysis method that provides a sufficient criterion for the termination problem of model transformations captured by graph transformation systems.


graph transformation termination model transformation Petri nets 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aßmann, U.: Graph Rewrite Systems for Program Optimization. In: ACM TOPLAS, vol. 22(4), pp. 583–637. ACM Press, New York (2000)Google Scholar
  2. 2.
    Bardohl, P.: Modelling Concurrent Computations: From Contextual Petri Nets to Graph Grammars. PhD thesis, University of Pisa (2000)Google Scholar
  3. 3.
    Baldan, P., Corradini, A., König, B.: A Static Analysis Technique for Graph Transformation Systems. In: Larsen, K.G., Nielsen, M. (eds.) CONCUR 2001. LNCS, vol. 2154, pp. 381–395. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  4. 4.
    Bardohl, R., Ehrig, H., de Lara, J., Taentzer, G.: Integrating Meta Modelling with Graph Transformation for Efficient Visual Language Definition and Model Manipulation. In: Wermelinger, M., Margaria-Steffen, T. (eds.) FASE 2004. LNCS, vol. 2984, pp. 214–228. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Bottoni, P., Koch, M., Parisi-Presicce, F., Taentzer, G.: Termination of High-Level Replacement Units with Application to Model Transformation. In: Proceedings of VLFM 2004. ENTCS (2004)Google Scholar
  6. 6.
    Bottoni, P., Taentzer, G., Schürr, A.: Efficient Parsing of Visual Languages based on Critical Pair Analysis and Contextual Layered Graph Transformation. In: Proc. Visual Languages 2000, pp. 59–60. IEEE Computer Society, Los Alamitos (2000)CrossRefGoogle Scholar
  7. 7.
    Corradini, A.: Concurrent Graph and Term Graph Rewriting. In: Sassone, V., Montanari, U. (eds.) CONCUR 1996. LNCS, vol. 1119, pp. 438–464. Springer, Heidelberg (1996)Google Scholar
  8. 8.
    Corradini, A., Montanari, U., Rossi, F., Ehrig, H., Heckel, R., Löwe, M.: Algebraic Approaches to Graph Transformation — Part I: Basic Concepts and Double Pushout Approach. In: [20], pp. 163–245. World Scientific, Singapore (1997)Google Scholar
  9. 9.
    Corradini, A., Montanari, U., Rossi, F.: Graph Processes. Fundamenta Informaticae 26(3/4), 241–265Google Scholar
  10. 10.
    Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph Transformation. Monographs in Theoretical Computer Science. An EATCS Series. Springer, New York (2006)Google Scholar
  11. 11.
    Ehrig, H., Ehrig, K., de Lara, J., Taentzer, G., Varró, D., Varró-Gyapay, S.: Termination Criteria for Model Transformation. In: Cerioli, M. (ed.) FASE 2005. LNCS, vol. 3442, pp. 49–63. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
    GAMS: General Algebraic Modeling System,
  13. 13.
    de Lara, J., Taentzer, G.: Automated Model Transformation and its Validation with AToM3 and AGG. In: Blackwell, A.F., Marriott, K., Shimojima, A. (eds.) DIAGRAMS 2004. LNCS, vol. 2980, pp. 182–198. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  14. 14.
    Küster, J., Sendall, S., Wahler, M.: Comparing two model transformation approaches. In: OCL and Model Driven Engineering (2004)Google Scholar
  15. 15.
    Model Transformations in Practice (Satellite Workshop of MODELS 2006),
  16. 16.
    Murata, T.: Petri nets: Properties, analysis and applications. In: Proc. IEEE, vol. 77, pp. 541–580 (1989)Google Scholar
  17. 17.
    Object Management Group. QVT: Request for Proposal for Queries, Views and Transformations,
  18. 18.
    Plump, D.: Termination of Graph Rewriting is Undecidable. Fundamenta Informaticae 33(2), 201–209 (1998)zbMATHMathSciNetGoogle Scholar
  19. 19.
    Rensink, A., Nederpel, R.: Graph transformation semantics for a QVT language. In: Proc. Fifth Intern. Workshop on Graph Transformation and Visual Modelling Techniques (GT-VMT 2006). ENTCS, pp. 45–56. Elsevier, Amsterdam (in Press, 2006)Google Scholar
  20. 20.
    Rozenberg, G. (ed.): Handbook of Graph Grammars and Computing by Graph Transformation, vol. 1. World Scientific, Singapore (1997)Google Scholar
  21. 21.
    Schürr, A.: Specification of Graph Translators with Triple Graph Grammars. In: Mayr, E.W., Schmidt, G., Tinhofer, G. (eds.) WG 1994. LNCS, vol. 903, pp. 151–163. Springer, Heidelberg (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Dániel Varró
    • 1
  • Szilvia Varró–Gyapay
    • 1
  • Hartmut Ehrig
    • 2
  • Ulrike Prange
    • 2
  • Gabriele Taentzer
    • 2
  1. 1.Department of Measurement and Information SystemsBudapest University of Technology and Economics 
  2. 2.Technical University of Berlin 

Personalised recommendations