Dynamic Graph Transformation Systems

  • Roberto Bruni
  • Hernán Melgratti
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4178)


We introduce an extension of Graph Grammars (GGs), called Dynamic Graph Grammars (DynGGs), where the right-hand side of a production can spawn fresh parts of the type graph and fresh productions operating on it. The features of DynGGs make them suitable for the straightforward modeling of reflexive mobile systems like dynamic nets and the Join calculus. Our main result shows that each DynGG can be modeled as a (finite) GG, so that the dynamically generated structure can be typed statically, still preserving exactly all derivations.


Graph Transformation Type Graph Graph Grammar Underlying Graph Dynamic Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Asperti, A., Busi, N.: Mobile Petri nets. Technical Report UBLCS 96-10, Computer Science Department, University of Bologna (1996)Google Scholar
  2. 2.
    Buscemi, M., Sassone, V.: High-level Petri nets as type theories in the Join calculus. In: Honsell, F., Miculan, M. (eds.) ETAPS 2001 and FOSSACS 2001. LNCS, vol. 2030, pp. 104–120. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  3. 3.
    Corradini, A., Degano, P., Montanari, U.: Specifying highly concurrent data structure manipulation. In: Proc. of Computing 1985: A Broad Perspective of Current Developments (1985)Google Scholar
  4. 4.
    Corradini, A., Montanari, U., Rossi, F., Ehrig, H., Heckel, R., Löwe, M.: Algebraic approaches to graph transformation I: Basic concepts and double pushout approach. In: [13]Google Scholar
  5. 5.
    Corradini, A., Montanari, U., Rossi, F.: Graph processes. Fund. Inf. 26, 241–265 (1996)zbMATHMathSciNetGoogle Scholar
  6. 6.
    Drewes, F., Kreowski, H.-J., Habel, A.: Hyperedge replacement graph grammars. In: [13]Google Scholar
  7. 7.
    Ehrig, H., Heckel, R., Korff, M., Löwe, M., Ribeiro, L., Wagner, A., Corradini, A.: Algebraic approaches to graph transformation II: Single pushout approach and comparison with double pushout approach. In: [13]Google Scholar
  8. 8.
    Engelfriet, J., Rozenberg, G.: Node replacement graph grammars. In: [13]Google Scholar
  9. 9.
    Fournet, C., Gonthier, G.: The reflexive chemical abstract machine and the Join calculus. In: Proc. of POPL 1996, pp. 372–385. ACM Press, New York (1996)CrossRefGoogle Scholar
  10. 10.
    Lanese, I.: Synchronization Strategies for Global Computing Models. PhD thesis, Department of Computer Science, University of Pisa (2006)Google Scholar
  11. 11.
    Hirsch, D.: Graph Transformation Models for Software Architecture Styles. PhD thesis, Departamento de Computación, Universidad de Buenos Aires (2003)Google Scholar
  12. 12.
    Löwe, M.: Algebraic approach to single-pushout graph transformation. Theoret. Comput. Sci. 109, 181–224 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Rozenberg, G. (ed.): Handbook of Graph Grammars and Computing by Graph Transformation. Foundations, vol. 1. World Scientific, Singapore (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Roberto Bruni
    • 1
  • Hernán Melgratti
    • 2
  1. 1.Computer Science DepartmentUniversity of PisaItaly
  2. 2.IMT Lucca Institute for Advanced StudiesItalia

Personalised recommendations