Skip to main content

Analytic Solution of Hierarchical Variational Bayes in Linear Inverse Problem

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4132))

Abstract

In singular models, the Bayes estimation, commonly, has the advantage of the generalization performance over the maximum likelihood estimation, however, its accurate approximation using Markov chain Monte Carlo methods requires huge computational costs. The variational Bayes (VB) approach, a tractable alternative, has recently shown good performance in the automatic relevance determination model (ARD), a kind of hierarchical Bayesian learning, in brain current estimation from magnetoencephalography (MEG) data, an ill-posed linear inverse problem. On the other hand, it has been proved that, in three-layer linear neural networks (LNNs), the VB approach is asymptotically equivalent to a positive-part James-Stein type shrinkage estimation. In this paper, noting the similarity between the ARD in a linear problem and an LNN, we analyze a simplified version of the VB approach in the ARD. We discuss its relation to the shrinkage estimation and how ill-posedness affects learning. We also propose the algorithm that requires simpler computation than, and will provide similar performance to, the VB approach.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hinton, G.E., van Camp, D.: Keeping Neural Networks Simple by Minimizing the Description Length of the Weights. In: Proc. of COLT, pp. 5–13 (1993)

    Google Scholar 

  2. Attias, H.: Inferring Parameters and Structure of Latent Variable Models by Variational Bayes. In: Proc. of UAI (1999)

    Google Scholar 

  3. Neal, R.M.: Bayesian Learning for Neural Networks. Springer, Heidelberg (1996)

    MATH  Google Scholar 

  4. Sato, M., Yoshioka, T., Kajihara, S., Toyama, K., Goda, N., Doya, K., Kawato, M.: Hierarchical Bayesian Estimation for MEG inverse problem. Neuro Image 23, 806–826 (2004)

    Google Scholar 

  5. James, W., Stein, C.: Estimation with Quadratic Loss. In: Proc. of the 4th Berkeley Symp. on Math. Stat. and Prob., pp. 361–379 (1961)

    Google Scholar 

  6. Nakajima, S., Watanabe, S.: Generalization Error and Free Energy of Variational Bayes Approach of Linear Neural Networks. In: Proc. of ICONIP, Taipei, Taiwan, pp. 55–60 (2005)

    Google Scholar 

  7. Callen, H.B.: Thermodynamics. Wiley, Chichester (1960)

    MATH  Google Scholar 

  8. Hamalainen, M., Hari, R., Ilmoniemi, R.J., Knuutila, J., Lounasmaa, O.V.: Magnetoencephalography — Theory, Instrumentation, and Applications to Noninvasive Studies of the Working Human Brain. Rev. Modern Phys. 65, 413–497 (1993)

    Article  Google Scholar 

  9. Nakajima, S., Watanabe, S.: Generalization Performance of Subspace Bayes Approach in Linear Neural Networks. IEICE Trans. E89-D, 1128–1138 (2006)

    Google Scholar 

  10. Efron, B., Morris, C.: Stein’s Estimation Rule and its Competitors—an Empirical Bayes Approach. J. of Am. Stat. Assoc. 68, 117–130 (1973)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nakajima, S., Watanabe, S. (2006). Analytic Solution of Hierarchical Variational Bayes in Linear Inverse Problem. In: Kollias, S., Stafylopatis, A., Duch, W., Oja, E. (eds) Artificial Neural Networks – ICANN 2006. ICANN 2006. Lecture Notes in Computer Science, vol 4132. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11840930_25

Download citation

  • DOI: https://doi.org/10.1007/11840930_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-38871-5

  • Online ISBN: 978-3-540-38873-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics