Skip to main content

Effective Input Variable Selection for Function Approximation

  • Conference paper
Artificial Neural Networks – ICANN 2006 (ICANN 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4131))

Included in the following conference series:

Abstract

Input variable selection is a key preprocess step in any I/O modelling problem. Normally, better generalization performance is obtained when unneeded parameters coming from irrelevant or redundant variables are eliminated. Information theory provides a robust theoretical framework for performing input variable selection thanks to the concept of mutual information. Nevertheless, for continuous variables, it is usually a more difficult task to determine the mutual information between the input variables and the output variable than for classification problems. This paper presents a modified approach for variable selection for continuous variables adapted from a previous approach for classification problems, making use of a mutual information estimator based on the k-nearest neighbors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bonnlander, B.V., Weigend, A.S.: Selecting input variables using mutual information and nonparametric density estimation. In: Proc. of the ISANN 2004, Taiwan, pp. 42–50 (1994)

    Google Scholar 

  2. Schoelkopf, B., Smola, A.: Learning with Kernels. MIT Press, Cambridge (2002)

    Google Scholar 

  3. Haykin, S.: Neural Networks. Prentice Hall, New Jersey (1998)

    Google Scholar 

  4. Suykens, J.A.K., Van Gestel, T., De Brabanter, J., De Moor, J., Vandewalle, B.: Least Squares Support Vector Machines. World Scientific, Singapore (2002)

    Book  MATH  Google Scholar 

  5. Herrera, L.J., Pomares, H., Rojas, I., Valenzuela, O., Prieto, A.: TaSe, a Taylor Series Based Fuzzy System Model that Combines Interpretability and Accuracy. Fuzzy Sets and Systems 153(3), 403–427 (2005)

    MATH  MathSciNet  Google Scholar 

  6. Koller, D., Sahami, M.: Toward Optimal Feature Selection. In: Proc. Int. Conf. on Machine Learning, pp. 284–292 (1996)

    Google Scholar 

  7. Rossi, F., Lendasse, A., François, D., Wertz, V., Verleysen, M.: Mutual Information for the selection of relevant variables in spectrometric nonlinear modeling. Chem. and Int. Lab. Syst. (2005) (In Press)

    Google Scholar 

  8. Benoudjit, N., François, D., Meurens, M., Verleysen, M.: Spectrophotometric variable selection by mutual information. Chem. and Int. Lab. Syst. 74, 243–251 (2004)

    Article  Google Scholar 

  9. Kraskov, A., Stögbauer, H., Grassberger, P.: Estimating mutual information. Phys.Rev. E 69, 66138 (2004)

    Google Scholar 

  10. http://www.klab.caltech.edu/~kraskov/MILCA/

  11. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley, New York (1991)

    Book  MATH  Google Scholar 

  12. Harald, S., Alexander, K., Sergey, A.A., Peter, G.: Least dependent component analysis based on mutual information. Phys. Rev. E 70, 66123 (2004)

    Google Scholar 

  13. Sorjamaa, A., Hao, J., Lendasse, A.: Mutual Information and k-Nearest Neighbors Approxi-mator for Time Series Prediction. In: Duch, W., Kacprzyk, J., Oja, E., Zadrożny, S. (eds.) ICANN 2005. LNCS, vol. 3697, pp. 553–558. Springer, Heidelberg (2005)

    Google Scholar 

  14. http://www.esat.kuleuven.ac.be/sista/lssvmlab/

  15. Pearl, J.: Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, CA (1988)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Herrera, L.J., Pomares, H., Rojas, I., Verleysen, M., Guilén, A. (2006). Effective Input Variable Selection for Function Approximation. In: Kollias, S.D., Stafylopatis, A., Duch, W., Oja, E. (eds) Artificial Neural Networks – ICANN 2006. ICANN 2006. Lecture Notes in Computer Science, vol 4131. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11840817_5

Download citation

  • DOI: https://doi.org/10.1007/11840817_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-38625-4

  • Online ISBN: 978-3-540-38627-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics