Skip to main content

Zero-Knowledge Proof of Generalized Compact Knapsacks (or A Novel Identification/Signature Scheme)

  • Conference paper
Autonomic and Trusted Computing (ATC 2006)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 4158))

Included in the following conference series:

  • 830 Accesses

Abstract

At FOCS 2002, a new generalized compact Knapsacks problem is introduced. It is shown that solving the generalized compact Knapsack problem on the average is at least as hard as the worst-case instance of various approximation problems over cyclic lattices. It is left as an open problem to construct a zero-knowledge proof of generalized compact Knapsack problem. In this paper, by investigating a new notion of one-way ensemble pair, we propose a generic construction of identification and achieve a signature with the Fiat-Shamir transformation. Following our generic construction, we implement a concrete scheme based on the random generalized compact Knapsack problem. Our scheme also implies the first efficient zero-knowledge proof of the generalized compact Knapsacks problem and results in a positive solution to the open problem at FOCS 2002.

This work is supported by ARC Discovery Grant DP0557493, the National Natural Science Foundation of China (No. 60403007) and the Project Foundation of Xi’an University of Technology in China (No. 108-210508).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ajtai, M.: Generating hard instances of lattice problem. In: Proceedings 28th Annual ACM Symposium on Theory of Computing, pp. 99–108 (1996)

    Google Scholar 

  2. Bennett, C.H., Bernstein, E., Brassard, G., Vazirani, U.: Strengths and weaknesses of quantum computing. SIAM J.Comput. 26(5), 1510–1523 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  3. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987)

    Google Scholar 

  4. Goldwasser, S., Tauman Kalai, Y.: On the (In)security of the Fiat-Shamir Paradigm. In: FOCS 2003, pp. 102–113. IEEE Computer Society Press, Los Alamitos (2003)

    Google Scholar 

  5. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W. (eds.) Complexity of computer computation, pp. 85–103. Plenum, New York (1972)

    Google Scholar 

  6. Lagarias, J.C., Odlyzko, A.M.: Solving low-density subset sum problems. Journal of the ACM 32(1), 229–246 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  7. Merkle, R.C., Hellman, M.E.: Hiding information and signatures in trapdoor Knapsacks. IEEE Transactions on Information Theory 24(5), 525–530 (1978)

    Article  Google Scholar 

  8. Micciancio, D.: Generalized compact knapsaks, cyclic lattices, and efficient one-way functions from worst-case complexity assumptions. In: FOCS 2002, pp. 356–365. IEEE Computer Society, Los Alamitos (2002)

    Google Scholar 

  9. Odlyzko, A.M.: The Rise and Fall of Knapsack Cryptosystems, Cryptology and Computational Number Theory. In: Am. Math. Soc., Proc. Symp. Appl. Math., vol. 42, pp. 75–88 (1990)

    Google Scholar 

  10. Okamoto, T., Tanaka, K., Uchiyama, S.: Quantum Public-Key Cryptosystems. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 147–165. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  11. Pointcheval, D.: A new Identification Scheme Based on the Perceptrons Problem. In: Guillou, L.C., Quisquater, J.-J. (eds.) EUROCRYPT 1995. LNCS, vol. 921, pp. 319–328. Springer, Heidelberg (1995)

    Google Scholar 

  12. Pointcheval, D., Stern, J.: Security Arguments for Digital Signatures and Blind Signatures. J. Cryptology 13, 361–396 (2000)

    Article  MATH  Google Scholar 

  13. Wu, Q., Chen, X., Wang, C., Wang, Y.: Shared-Key Signature and Its Application to Anonymous Authentication in Ad Hoc Group. In: Zhang, K., Zheng, Y. (eds.) ISC 2004. LNCS, vol. 3225, pp. 330–341. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  14. Regev, O.: New lattice based cryptographic constructions. In: ACM-STOC 2003, pp. 407–426. ACM Press, New York (2003)

    Google Scholar 

  15. Shamir, A.: A Fast Signature Scheme MIT/LCS/TM-107. MIT Laboratory for Computer Science, Cambridge (1978)

    Google Scholar 

  16. Shamir, A.: A Polynomial-Time Algorithm for Breaking the Basic Merkle-Hellman Cryptosystem. IEEE Transactions on Information Theory 30, 699–704 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  17. Shamir, A.: An efficient Identification Scheme Based on Permuted Kernels. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 606–609. Springer, Heidelberg (1990)

    Google Scholar 

  18. Shor, P.W.: Polynomial-time algorithm for prime factorization and discretelogarithms on a quantum computer. SIAM Journal of Computing 26, 1484–1509 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  19. Stern, J.: Designing identification schemes with keys of short size. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 164–173. Springer, Heidelberg (1994)

    Google Scholar 

  20. Vandersypen, L.M.K., Steffen, M., Breyta, G., Yannoni, C.S., Sherwood, M.H., Chuang, I.L.: Experimental realization of shor’s quantum factoring algorithm using nuclear magnetic resonance. Nature 414, 883–887 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Qin, B., Wu, Q., Susilo, W., Mu, Y., Wang, Y. (2006). Zero-Knowledge Proof of Generalized Compact Knapsacks (or A Novel Identification/Signature Scheme). In: Yang, L.T., Jin, H., Ma, J., Ungerer, T. (eds) Autonomic and Trusted Computing. ATC 2006. Lecture Notes in Computer Science, vol 4158. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11839569_52

Download citation

  • DOI: https://doi.org/10.1007/11839569_52

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-38619-3

  • Online ISBN: 978-3-540-38622-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics