Skip to main content

Flexible Versus Rigid Tile Assembly

  • Conference paper
Unconventional Computation (UC 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4135))

Included in the following conference series:

Abstract

DNA molecules have been assembled in rigid DX and TX molecules, arrayed in assemblies similar to Wang tiles, and, as flexible branched junction molecules with flexible arms have been used in assemblies representing arbitrary graphs. This paper considers both models of rigid and flexible tiles. A model representing complexes assembled out of rigid tiles based on tile displacements is presented. This presentation is used to simulate computations obtained from (bounded) rigid tile self-assembly by corresponding assemblies of flexible tiles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cambridge Structural Database, Cambridge Crystallographic Data Centre, on-line at: http://www.ccdc.cam.ac.uk/

  2. Carbone, A., Seeman, N.C.: Molecular tiling and DNA self-assembly. In: Jonoska, N., Păun, G., Rozenberg, G. (eds.) Aspects of Molecular Computing. LNCS, vol. 2950, pp. 61–83. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  3. Desiraju, G.R.: Crystal Engineering: the Design of Organic Solids. Elsevier, Amsterdam (1989)

    Google Scholar 

  4. Foster, M.D., Treacy, M.M.J., Higgins, J.B., Rivin, I., Balkovsky, E., Randall, K.H.: A systematic topological search for the framework of ZSM-10. J. Appl. Crystallography 38, 1028–1030 (2005), http://www.hypotheticalzeolites.net/

    Article  Google Scholar 

  5. Jonoska, N., Sa-Ardyen, P., Seeman, N.C.: Computation by self-assembly of DNA graphs. Genetic Programming and Evolvable Machines 4, 123–137 (2003)

    Article  Google Scholar 

  6. Jonoska, N., Liao, S., Seeman, N.C.: Transducers with Programmable Input by DNA Self-assembly. In: Jonoska, N., Păun, G., Rozenberg, G. (eds.) Aspects of Molecular Computing. LNCS, vol. 2950, pp. 219–240. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  7. Jonoska, N., Karl, S., Saito, M.: Three dimensional DNA structures in computing. BioSystems 52, 143–153 (1999)

    Article  Google Scholar 

  8. Jonoska, N., McColm, G.L.: A Computational Model for Self-assembling Flexible Tiles. In: Calude, C.S., Dinneen, M.J., Păun, G., Jesús Pérez-Jímenez, M., Rozenberg, G. (eds.) UC 2005. LNCS, vol. 3699, pp. 142–156. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  9. Jonoska, N., McColm, G.L.: From rigid tiles to flexible and back (in preparation)

    Google Scholar 

  10. Rothemund, P., Papadakis, N., Winfree, E.: Algorithmic Self-assembly of DNA Sierpinski Triangles. PLoS Biology 2(12) (2004), available at: http://biology.plosjournals.org/

  11. Rothemund, P.W.K., Winfree, E.: The Program-Size Complexity of Self-Assembled Squares. In: Proceedings of 33rd ACM meeting STOC 2001, Portland, Oregon, May 21-23, pp. 459–468 (2001)

    Google Scholar 

  12. Sa-Ardyen, P., Jonoska, N., Seeman, N.: Self-assembling DNA graphs. Natural Computing 2(4), 427–438 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Service, R.F.: How Far Can We Push Chemical Self-Assembly? Science 309(5731), 95 (2005)

    Article  Google Scholar 

  14. Winfree, E.: Self healing tile sets. In: Chen, J., Jonoska, N., Rozenberg, G. (eds.) Nanotechnology: Science and Computation, pp. 55–74. Springer, Heidelberg (2005)

    Google Scholar 

  15. Winfree, E., Yang, X., Seeman, N.C.: Universal computation via self-assembly of DNA: some theory and experiments. In: Landweber, L., Baum, E. (eds.) DNA based computers II. AMS DIMACS, vol. 44, pp. 191–214 (1998)

    Google Scholar 

  16. Winfree, E., Liu, F., Wenzler, L.A., Seeman, N.C.: Design and self-assembly of two-dimensional DNA crystals. Nature 394, 539–544 (1998)

    Article  Google Scholar 

  17. Zaworotko, M.J.: Superstructural diversity in two dimensions: crystal engineering of laminated solids. Chemical Communications (1), 1–9 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jonoska, N., McColm, G.L. (2006). Flexible Versus Rigid Tile Assembly. In: Calude, C.S., Dinneen, M.J., Păun, G., Rozenberg, G., Stepney, S. (eds) Unconventional Computation. UC 2006. Lecture Notes in Computer Science, vol 4135. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11839132_12

Download citation

  • DOI: https://doi.org/10.1007/11839132_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-38593-6

  • Online ISBN: 978-3-540-38594-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics