Skip to main content

Robust HGCD with No Backup Steps

  • Conference paper
Mathematical Software - ICMS 2006 (ICMS 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4151))

Included in the following conference series:

  • 891 Accesses

Abstract

Subquadratic divide-and-conquer algorithms for computing the greatest common divisor have been studied for a couple of decades. The integer case has been notoriously difficult, with the need for “backup steps” in various forms. This paper explains why backup steps are necessary for algorithms based directly on the quotient sequence, and proposes a robustness criterion that can be used to construct a “half-gcd” algorithm without any backup steps.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lehmer, D.H.: Euclid’s algorithm for large numbers. American Mathematical Monthly 45, 227–233 (1938)

    Article  MathSciNet  Google Scholar 

  2. Knuth, D.E.: The analysis of algorithms. Actes du Congrés International des Mathématiciens, 269–274 (1970)

    Google Scholar 

  3. Schönhage, A.: Schnelle Berechnung von Kettenbruchentwicklungen. Acta Informatica 1, 139–144 (1971)

    Article  MATH  Google Scholar 

  4. Thull, K., Yap, C.K.: A unified approach to HGCD algorithms for polynomials and integers (manuscript 1990), available from: http://cs.nyu.edu/cs/faculty/yap/papers

  5. Pan, V.Y., Wang, X.: Acceleration of Euclidean algorithm and extensions. In: ISSAC 2002: Proceedings of the 2002 international symposium on Symbolic and algebraic computation, pp. 207–213. ACM Press, New York (2002)

    Chapter  Google Scholar 

  6. Möller, N.: On Schönhage’s algorithm and subquadratic integer gcd computation (preprint, 2005), available at: http://www.lysator.liu.se/~nisse/archive/sgcd.pdf

  7. Stein, J.: Computational problems associated with Racah algebra. Journal of Computational Physics 1(3), 397–405 (1967)

    Article  MATH  Google Scholar 

  8. Sorenson, J.P.: Two fast GCD algorithms. Journal of Algorithms 16(1), 110–144 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  9. Weber, K.: The accelerated integer GCD algorithm. ACM Transactions on Mathematical Software 21, 111–122 (1995)

    Article  MATH  Google Scholar 

  10. Stehlé, D., Zimmermann, P.: A binary recursive GCD algorithm. In: Buell, D.A. (ed.) ANTS 2004. LNCS, vol. 3076, pp. 411–425. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  11. Weilert, A.: Asymptotically fast GCD computation in z[i]. In: Bosma, W. (ed.) ANTS 2000. LNCS, vol. 1838, p. 602. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  12. Brent, R.P., van der Poorten, A.J., te Riele, H.J.J.: A comparative study of algorithms for computing continued fractions of algebraic numbers. In: Cohen, H. (ed.) ANTS 1996. LNCS, vol. 1122, pp. 35–47. Springer, Heidelberg (1996)

    Google Scholar 

  13. Weilert, A.: Ein schneller algorithmus zur berechnung des quartischen restsymbols. Diplomarbeit, Math. Inst. der Univ., Bonn (1999)

    Google Scholar 

  14. Lucier, B.: Personal communication (2005)

    Google Scholar 

  15. Schönhage, A.: Fast reduction and composition of binary quadratic forms. In: Watt, S.M. (ed.) Proc. of Intern. Symp. on Symbolic and Algebraic Computation, pp. 128–133. ACM Press, Bonn (1991)

    Google Scholar 

  16. Stehlé, D., Zimmermann, P.: Personal communication (2005–2006)

    Google Scholar 

  17. Jebelean, T.: A double-digit Lehmer-Euclid algorithm for finding the GCD of long integers. Journal of Symbolic Computation 19(1-3), 145–157 (1995)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Möller, N. (2006). Robust HGCD with No Backup Steps. In: Iglesias, A., Takayama, N. (eds) Mathematical Software - ICMS 2006. ICMS 2006. Lecture Notes in Computer Science, vol 4151. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11832225_17

Download citation

  • DOI: https://doi.org/10.1007/11832225_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-38084-9

  • Online ISBN: 978-3-540-38086-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics