Skip to main content

Threshold Functions for Asymmetric Ramsey Properties Involving Cliques

  • Conference paper
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX 2006, RANDOM 2006)

Abstract

Consider the following problem: For given graphs G and F 1,..., F k , find a coloring of the edges of G with k colors such that G does not contain F i in color i. For example, if every F i is the path P 3 on 3 vertices, then we are looking for a proper k-edge-coloring of G, i.e., a coloring of the edges of G with no pair of edges of the same color incident to the same vertex.

Rödl and Ruciński studied this problem for the random graph G \(_{n,{\it p}}\) in the symmetric case when k is fixed and F 1=...=F k =F. They proved that such a coloring exists asymptotically almost surely (a.a.s.) provided that pbn  − β for some constants b=b(F,k) and β= β(F). Their proof was, however, non-constructive. This result is essentially best possible because for pBn  − β, where B=B(F, k) is a large constant, such an edge-coloring does not exist. For this reason we refer to n  − β as a threshold function.

In this paper we address the case when F 1,..., F k are cliques of different sizes and propose an algorithm that a.a.s. finds a valid k-edge-coloring of G n,p with pbn  − β for some constants b=b(F 1,..., F k , k) and β = β(F 1,..., F k ). Kohayakawa and Kreuter conjectured that \(n^{-\beta(F_1,\dots, F_k)}\) is a threshold function in this case. This algorithm can be also adjusted to produce a valid k-coloring in the symmetric case.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ramsey, F.P.: On a problem of formal logic. Proceedings of the London Mathematical Society 30, 264–286 (1930)

    Article  Google Scholar 

  2. Folkman, J.: Graphs with monochromatic complete subgraphs in every edge coloring. SIAM J. Appl. Math. 18, 19–24 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  3. Nešetřil, J., Rödl, V.: The Ramsey property for graphs with forbidden complete subgraphs. J. Combinatorial Theory Ser. B 20, 243–249 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  4. Rödl, V., Ruciński, A.: Threshold functions for Ramsey properties. J. Amer. Math. Soc. 8, 917–942 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  5. Rödl, V., Ruciński, A.: Lower bounds on probability thresholds for Ramsey properties. In: Combinatorics, Paul Erdős is eighty. Bolyai Soc. Math. Stud. János Bolyai Math. Soc., Budapest, vol. 1, pp. 317–346 (1993)

    Google Scholar 

  6. Łuczak, T., Ruciński, A., Voigt, B.: Ramsey properties of random graphs. J. Combin. Theory Ser. B 56, 55–68 (1992)

    Article  MathSciNet  Google Scholar 

  7. Chung, F., Graham, R.: Erdős on graphs. A K Peters Ltd., Wellesley (1998); His legacy of unsolved problems

    Google Scholar 

  8. Kim, J.H.: The Ramsey number R(3,t) has order of magnitude \(t\sp 2/\log t\). Random Structures Algorithms 7, 173–207 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  9. Kohayakawa, Y., Kreuter, B.: Threshold functions for asymmetric Ramsey properties involving cycles. Random Structures Algorithms 11, 245–276 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  10. Kohayakawa, Y.: Szemerédi’s regularity lemma for sparse graphs. In: Foundations of computational mathematics (Rio de Janeiro, 1997), pp. 216–230. Springer, Berlin (1997)

    Google Scholar 

  11. Kohayakawa, Y., Łuczak, T., Rödl, V.: On \(K\sp 4\)-free subgraphs of random graphs. Combinatorica 17, 173–213 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  12. Janson, S., Łuczak, T., Rucinski, A.: Random graphs. Wiley-Interscience Series in Discrete Mathematics and Optimization. Wiley-Interscience, New York (2000)

    MATH  Google Scholar 

  13. Gerke, S., Marciniszyn, M., Steger, A.: A probabilistic counting lemma for complete graphs. In: Felsner, S. (ed.) 2005 European Conference on Combinatorics, Graph Theory and Applications (EuroComb 2005). Volume AE of DMTCS Proceedings. Discrete Mathematics and Theoretical Computer Science, pp. 309–316 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Marciniszyn, M., Skokan, J., Spöhel, R., Steger, A. (2006). Threshold Functions for Asymmetric Ramsey Properties Involving Cliques. In: Díaz, J., Jansen, K., Rolim, J.D.P., Zwick, U. (eds) Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques. APPROX RANDOM 2006 2006. Lecture Notes in Computer Science, vol 4110. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11830924_42

Download citation

  • DOI: https://doi.org/10.1007/11830924_42

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-38044-3

  • Online ISBN: 978-3-540-38045-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics