Skip to main content

Abstract

A central problem in the algorithmic study of lattices is the closest vector problem: given a lattice \(\mathcal{L}\) represented by some basis, and a target point \(\vec{y}\), find the lattice point closest to \(\vec{y}\). Bounded Distance Decoding is a variant of this problem in which the target is guaranteed to be close to the lattice, relative to the minimum distance \(\lambda_1(\mathcal{L})\) of the lattice. Specifically, in the α-Bounded Distance Decoding problem (α-BDD), we are given a lattice \(\mathcal{L}\) and a vector \(\vec{y}\) (within distance \(\alpha\cdot\lambda_1(\mathcal{L})\) from the lattice), and we are asked to find a lattice point \(\vec{x}\in \mathcal{L}\) within distance \(\alpha\cdot\lambda_1(\mathcal{L})\) from the target. In coding theory, the lattice points correspond to codewords, and the target points correspond to lattice points being perturbed by noise vectors. Since in coding theory the lattice is usually fixed, we may “pre-process” it before receiving any targets, to make the subsequent decoding faster. This leads us to consider α-BDD with pre-processing. We show how a recent technique of Aharonov and Regev [2] can be used to solve α-BDD with pre-processing in polynomial time for \(\alpha=O\left(\sqrt{(\log{n})/n}\right)\). This improves upon the previously best known algorithm due to Klein [13] which solved the problem for \(\alpha=O\left(1/n\right)\). We also establish hardness results for α-BDD and α-BDD with pre-processing, as well as generalize our results to other ℓ p norms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agrell, E., Eriksson, T., Vardy, A., Zeger, K.: Closest point search in lattices. IEEE Trans. on Inf. Theory 48(8), 2201–2214 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  2. Aharonov, D., Regev, O.: Lattice problems in NP ∩ coNP. Journal of the ACM 52(5), 749–765 (2005)

    Article  MathSciNet  Google Scholar 

  3. Ajtai, M., Kumar, R., Sivakumar, D.: Sampling short lattice vectors and the closest lattice vector problem. In: CCC, pp. 53–57 (2002)

    Google Scholar 

  4. Alekhnovich, M., Khot, S., Kindler, G., Vishnoi, N.: Hardness of approximating the closest vector problem with pre-processing. In: FOCS (2005)

    Google Scholar 

  5. Arora, S., Babai, L., Stern, J., Sweedyk, Z.: The hardness of approximate optima in lattices, codes, and systems of linear equations. Journal of Computer and System Sciences 54(2), 317–331 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  6. Babai, L.: On Lovász’ lattice reduction and the nearest lattice point problem. Combinatorica 6(1), 1–13 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  7. Banaszczyk, W.: New bounds in some transference theorems in the geometry of numbers. Mathematische Annalen 296(4), 625–635 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  8. Banihashemi, A.H., Khandani, A.K.: On the complexity of decoding lattices using the Korkin-Zolotarev reduced basis. IEEE Trans. on Inf. Theory 44(1), 162–171 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  9. Dinur, I., Kindler, G., Raz, R., Safra, S.: Approximating CVP to within almost-polynomial factors is NP-hard. Combinatorica 23(2), 205–243 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  10. Dumer, I., Micciancio, D., Sudan, M.: Hardness of approximating the minimum distance of a linear code. IEEE Trans. on Inf. Theory 49(1), 22–37 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  11. Feige, U., Micciancio, D.: The inapproximability of lattice and coding problems with preprocessing. Journal of Computer and System Sciences 69(1), 45–67

    Google Scholar 

  12. Khot, S.: Hardness of approximating the shortest vector problem in lattices. In: FOCS, pp. 126–135 (2004)

    Google Scholar 

  13. Klein, P.: Finding the closest lattice vector when it’s unusually close. In: SODA, pp. 937–941 (2000)

    Google Scholar 

  14. Lagarias, J.C., Lenstra Jr., H.W., Schnorr, C.P.: Korkin-zolotarev bases and successive minima of a lattice and its reciprocal lattice. Combinatorica 10(4), 333–348 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  15. Micciancio, D.: The hardness of the closest vector problem with preprocessing. IEEE Trans. on Inf. Theory 47(3), 1212–1215 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  16. Micciancio, D.: The shortest vector problem is NP-hard to approximate to within some constant. SIAM J. on Computing 30(6), 2008–2035 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  17. Micciancio, D., Goldwasser, S.: Complexity of Lattice Problems: A Cryptographic Perspective. Kluwer Academic Publishers, Dordrecht (2002)

    MATH  Google Scholar 

  18. Regev, O.: Improved inapproximability of lattice and coding problems with preprocessing. IEEE Trans. on Inf. Theory 50(9), 2031–2037 (2004)

    Article  MathSciNet  Google Scholar 

  19. Regev, O., Rosen, R.: Lattice problems and norm embeddings. In: STOC (2006)

    Google Scholar 

  20. Schoenberg, I.J.: Metric spaces and positive definite functions. Trans. Amer. Math. Soc. 44(3), 522–536 (1938)

    Article  MATH  MathSciNet  Google Scholar 

  21. Stefankovic, D.: Fourier transforms in computer science. Master’s thesis, University of Chicago (2000)

    Google Scholar 

  22. Stewart, J.: Positive definite functions and generalizations, an historical survey. Rocky Mountain J. Math. 6(3) (1976)

    Google Scholar 

  23. Vardy, A.: Algorithmic complexity in coding theory and the minimum distance problem. In: STOC, pp. 92–109 (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liu, YK., Lyubashevsky, V., Micciancio, D. (2006). On Bounded Distance Decoding for General Lattices. In: Díaz, J., Jansen, K., Rolim, J.D.P., Zwick, U. (eds) Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques. APPROX RANDOM 2006 2006. Lecture Notes in Computer Science, vol 4110. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11830924_41

Download citation

  • DOI: https://doi.org/10.1007/11830924_41

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-38044-3

  • Online ISBN: 978-3-540-38045-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics