Skip to main content

Abstract

We introduce the maximum graph homomorphism (MGH) problem: given a graph G, and a target graph H, find a mapping ϕ:V G V H that maximizes the number of edges of G that are mapped to edges of H. This problem encodes various fundamental NP-hard problems including Maxcut and Max-k-cut. We also consider the multiway uncut problem. We are given a graph G and a set of terminals T ⊆ V G . We want to partition V G into |T| parts, each containing exactly one terminal, so as to maximize the number of edges in E G having both endpoints in the same part. Multiway uncut can be viewed as a special case of prelabeled MGH where one is also given a prelabeling \({\ensuremath{\varphi}}':U\mapsto V_H,\ U{\subseteq} V_G\), and the output has to be an extension of ϕ′.

Both MGH and multiway uncut have a trivial 0.5-approximation algorithm. We present a 0.8535-approximation algorithm for multiway uncut based on a natural linear programming relaxation. This relaxation has an integrality gap of \(\frac{6}{7}\simeq 0.8571\), showing that our guarantee is almost tight. For maximum graph homomorphism, we show that a \(\bigl({\ensuremath{\frac{1}{2}}}+{\ensuremath{\varepsilon}}_0)\)-approximation algorithm, for any constant ε 0 > 0, implies an algorithm for distinguishing between certain average-case instances of the subgraph isomorphism problem that appear to be hard. Complementing this, we give a \(\bigl({\ensuremath{\frac{1}{2}}}+\Omega(\frac{1}{|H|\log{|H|}})\bigr)\)-approximation algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aggarwal, G., Feder, T., Motwani, R., Zhu, A.: Channel assignment in wireless networks and classification of minimum graph homomorphism. In: ECCC: TR06-040 (2006)

    Google Scholar 

  2. Alekhnovich, M.: More on average case vs approximation complexity. In: Proceedings, 44th FOCS, pp. 298–307 (2003)

    Google Scholar 

  3. Arora, S., Karger, D., Karpinski, M.: Polynomial time approximation schemes for dense instances of NP-hard problems. J. Comput. Syst. Sci. 58, 193–210 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  4. Babai, L., Erdös, P., Selkow, S.: Random graph isomorphism. SICOMP 9, 628–635 (1980)

    MATH  Google Scholar 

  5. Calinescu, G., Karloff, H., Rabani, Y.: An improved approximation algorithm for multiway cut. Journal of Computer and System Sciences 60, 564–574 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  6. Charikar, M., Wirth, A.: Maximizing quadratic programs: Extending Grothendieck’s inequality. In: Proceedings, 45th FOCS, pp. 54–60 (2004)

    Google Scholar 

  7. Cohen, D., Cooper, M., Jeavons, P., Krokhin, A.: A maximal tractable class of soft constraints. Journal of Artificial Intelligence Research 22, 1–22 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  8. Cooper, C., Dyer, M., Frieze, A.: On Markov chains for randomly H-coloring a graph. Journal of Algorithms 39, 117–134 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  9. Dahlhaus, E., Johnson, D., Papadimitriou, C., Seymour, P., Yannakakis, M.: The complexity of multiterminal cuts. SICOMP 23, 864–894 (1994)

    MATH  MathSciNet  Google Scholar 

  10. Demaine, E.D., Feige, U., Hajiaghayi, M.T., Salavatipour, M.: Combination can be hard: Approximability of the unique coverage problem. In: Proceedings, 17th SODA, pp. 162–171 (2006)

    Google Scholar 

  11. Díaz, J., Serna, M.J., Thilikos, D.M.: The complexity of restrictive H-coloring. In: Kučera, L. (ed.) WG 2002. LNCS, vol. 2573, pp. 126–137. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  12. Dyer, M.E., Greenhill, C.S.: The complexity of counting graph homomorphisms. Random Structures and Algorithms 25, 346–352 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  13. Feder, T., Hell, P.: List homomorphisms to reflexive graphs. Journal of Combinatorial Theory, Series B 72, 236–250 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  14. Feige, U.: Relations between average case complexity and approximation complexity. In: Proceedings, 34th STOC, pp. 534–543 (2002)

    Google Scholar 

  15. Feige, U., Langberg, M.: The RPR2̂ rounding technique for semidefinite programs. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 213–224. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  16. Freund, A., Karloff, H.: A lower bound of \(8/(7+\frac{1}{k-1})\) on the integrality ratio of the Calinescu-Karloff-Rabani relaxation for multiway cut. Information Processing Letters 75, 43–50 (2000)

    Article  MathSciNet  Google Scholar 

  17. Frieze, A., McDiarmid, C.: Algorithmic theory of random graphs. Random Structures and Algorithms 10, 5–42 (1997)

    Article  MathSciNet  Google Scholar 

  18. Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. Journal of the ACM 42, 1115–1145 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  19. Gutin, G., Rafiey, A., Yeo, A., Tso, M.: Level of repair analysis and minimum cost homomorphisms of graphs. Discrete Applied Mathematics 154, 881–889 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  20. Hell, P., Nešetřil, J.: On the complexity of H-coloring. Journal of Combinatorial Theory, Series B 48, 92–110 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  21. Hell, P., Nešetřil, J.: Graphs and Homomorphisms. Oxford Univ. Press, Oxford (2004)

    Book  MATH  Google Scholar 

  22. Kann, V.: On the approximability of the maximum common subgraph problem. In: Proceedings, 9th STACS, pp. 377–388 (1992)

    Google Scholar 

  23. Karger, D., Klein, P., Stein, C., Thorup, M., Young, N.: Rounding algorithms for a geometric embedding of minimum multiway cut. M. of OR 29, 436–461 (2004)

    MATH  MathSciNet  Google Scholar 

  24. Kleinberg, J., Tardos, É.: Approximation algorithms for classification problems with pairwise relationships: metric labeling and Markov random fields. Journal of the ACM 49, 616–639 (2002)

    Article  MathSciNet  Google Scholar 

  25. Turán, P.: On an extremal problem in graph theory. Mat. Fiz. Lapok 48, 436–452 (1941)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Langberg, M., Rabani, Y., Swamy, C. (2006). Approximation Algorithms for Graph Homomorphism Problems. In: Díaz, J., Jansen, K., Rolim, J.D.P., Zwick, U. (eds) Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques. APPROX RANDOM 2006 2006. Lecture Notes in Computer Science, vol 4110. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11830924_18

Download citation

  • DOI: https://doi.org/10.1007/11830924_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-38044-3

  • Online ISBN: 978-3-540-38045-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics